Dr. agr. Stefan Viebahn SVIFT Consultancy Gervershagenerstraße 3 D- 51709 Marienheide Germany www.svift.de

Second Litter Syndrome: Threat or Challenge?

Veterinarian Congress Gruppo Veterinario Suinicolo, Mantova 3 Marzo 2011

APPROCCIO PRATICO ALL'IPOFERTILITA DELLA SCROFA: CAUSE E SOLUZIONI

Characteristics of the Second Litter Syndrome (SLS)

Impact of the SLS

Causes of the SLS

Management strategies support SLS-prevention

Reproduction Control: the strategy to prevent SLS

Conclusion

Characteristics of the Second Litter Syndrome (SLS)

• A prolonged Weaning-Oestrus- or Weaning-Service-Interval after the first parity

- A decreased Gestation Rate after the first parity
- A decreased Farrowing Rate in the second parity
- A reduced or similar Litter Size in the second parity
- An outstanding high Replacement Rate
- SLS is a problem of the individual farm

SLS and Weaning-Oestrus-Interval (WOI)

Factor	Factor Level	n	Average WOI (d)	Significance	
Lactation	3	14.213	5,36	No	
(weeks)	4	7.063	5,32	significance	
Parity	2	3.823	5,61		
	3-6	12.795	5,28	*** P < 0,001	
	≥7	4.661	5,13		

Results of a Analysis of Variance (ANOVA)

SLS and Farrowing Rate (in well managed farms)

SLS and Litter Size I

SLS and Litter Size II

Factor	Factor Level	n	Average total born piglet	Significance
Lactation	3	12.364	11,74	***
(weeks)	4	5.712	12,07	P < 0,001
	2	3.300	11,36	+ 1,06
Parity	3-6	11.479	12,42	*** P < 0,001
	≥7	3.297	11,93	

Results of a Analysis of Variance (ANOVA)

SLS and Replacement Rate

"In Denmark ≥ 20% of the gilts do not reach the 3. parity…"

Source: Dr. Peter Johannsen, DTL A/S, Lecture Leipzig, 25.01.2011

Consequence:

Increase of the Replacement Rate

Target	Forecast	
Replacement Rate in %	Replacement Rate in %	
35	44	
40	50	
45	56	

Impact of the SLS

The model farm:

Parameter	Shape	
Average number of sows	1000	
Share of primiparous in %	20	
Average lactation length	24	
Average farrowing/sow/year	2,4	
Average replacement rate in %	53	
Average farrowing rate in %	89	
Average farrowing rate of primiparous in %	76	
Average number of sold piglets/sow/year	25	

Impact of the SLS

Impact on productivity

	= + 1 farrowing primiparous per batch = 0,5 sold piglets/sow/year		
* : FR = Farrowing Rate			
+ 10 %	+ 2 %	+ 500	
+ 5 %	+ 1 %	+ 250	
Performance of FR* in second litter sows	Modification of total FR	Modification of sold piglets	

Impact of the SLS

..... impact on cost performance

Performance of FR in second litter sows	Modification of demand on replacement gilts	Modification of costs*
+ 5 %	- 3 gilts/year	- 2.790,- €
+ 10 %	- 30 gilts/year	-27. 900,- €

* = considered costs: purchase, feed + housing for introduction period, additional work load.

Not considered: costs of vaccinations, oestrus synchronisation, lack of productivity, additional vet services

A negative energy balance during the first lactation period

Trigger of high energy demand:

- high fertility in the first litter,
- high milk production,
- long lactation period,
- not finalized growing and maturing process,
- Unsufficient housing conditions (temperature, ammonia concentration, animal health status)

Trigger of low energy supply:

- lack of body condition and depot fat
- unsufficient gilt introduction management
- not adapted feeding strategy during rearing-, introduction-, gestation- and first lactation- period,
- low animal health status,
- leg lesions,
- unsufficient housing conditions (floor design, light management, boar/puberty management),
- unsufficient socialization (sow-sow, sow-human being, group housing)

Reduced number + quality of follicles = unsufficient fertility performance

Recruitment of follicles depends on high pulse frequency with low ampitude of LH

Management strategies support SLS-prevention

- Optimize feeding strategy from the rearing period up to weaning of the 3. litter according the "gilts" requirements.
- A gilt is not a fattener: adjust the feeding strategy to develop fat tissue.
- A gilt is not a fattener: do not explore the genetic potential of daily weight gain.
- Control the onset of puberty = stimulating by a good boar
- Document the sexual cycles
- Choose the optimal age and body condition for 1st service
- Ensure a high animal health status
- Skip a heat: possible strategy but economical not reasonable

Material and methods:

- 11.852 pluriparous sows (2 or more farrowings)
 3.498 primiparous sows (first litter sows)
- Danish breed
- Healthy sows (no puerperal disorders, no gynaecological abnormalities, good general health condition and body condition)
- Lactation period: 21 days, weaning Thursday 10.30 a.m.

Material and methods:

- Comparison estrus stimulation strategy January July 2008 vs. January – July 2009
- Estrus stimulation 24 hours after weaning:

pluriparous sows:				
Group I PMSG (n = 6430)	In 2008: 800 IE PMSG s.c.			
Group II Peforelin (n = 5422)	In 2009: 150 µg Peforelin i.m.			
primiparous sows:				
a				
$\frac{\text{Group III}}{\text{PMSG (n = 2062)}}$	In 2008: 1000 IE PMSG s.c.			

Peforelin: a synthetic GnRH-Analoga inducing predominantly the release of FSH. Registered for oestrus stimulation in sows.

Peforelin for primiparous sows

a.m. = morning, p.m. = afternoon.

Recommended insemination timing: $AI_1 12 - 24$ h after onset of estrus, AI_2 up to 18 h later. Sows with short weaning-to-estrus-interval and longer duration of estrus should be inseminated later than sows with a later onset of estrus. AI_3 can be performed in sows with extremely long duration of standing heat.

Results:

	Group I (2008 = PMSG)	Gorup II (2009 = Peforelin®)
Inseminated sows	6.430	5.422
Cotructota*	5.837	4.986
Estrustate %	90,79 % ^b	91,96 % ^a
Pregnancy rate	93,30 % ^b	94,93 % ^a
Total born litters	5.768	4.883
Farrowing rate	89,70 %	90,06 %
Total born piglets/litter (TBP/litter)**	14,44	14,89
Live born piglets/litter (LBP/litter)**	12,94	13,17
Piglet-Index (TBP/100 inseminations)**	1.295	1.341
Piglet-Index (LBP/100 inseminations)**	1.161	1.186

^{a, b}: Differences between the groups were significant (p < 0.05)

* Estrus up to day 6 after weaning

** no statistical analysis

Results: primiparous sows

		Gruppe III (2008 = PMSG)	Gruppe IV (2009 = Peforelin)
Inseminated sows		2.062	1.436
Fotsuerote*	n	1.660	1.250
Estrusrate	%	80,50 % ^b	87,05 % ^a
Farrowing rate		88,31 %	89,62 %
Total born piglets/litter (TBP/litter)**		13,79	14,62
Live born piglets/litter (LBP/litter)**		12,89	13,43
Piglet-Index (TBP/100 inseminations)**		1.218	1.310
Piglet-Index (LBP/100 inseminations)**		1.138	1.203

^{a, b}: Differences between the groups were significant (p < 0.05)

* Estrus up to day 6 after weaning

** no statistical analysis

Results: primiparous sows

^{a, b, c}: Differences between the the groups were significant (p < 0.05)

21 - 35 = Insemination between January and first decade of May

36 - 45 = Insemination between mid of May and July

Results: primiparous sows

No significant differences between the groups (p > 0,05), other parameters no statistical analysis 21 - 35 = Insemination between January and first decade of May 36 - 45 = Insemination between mid of May and July

Discusssion

Differences between year, season, feed, staff

Average breeding progress:

13,5 TBP/litter in 2006 14,0 TBP/litter in 2007 14,2 TBP/litter in 2008 14,5 TBP/litter in 2009

Reducing the herd size in 2008 and 2009 by an intensive selection on a high level

Estrus stimulation by Peforelin in primiparous sows:

- Increased estrus rate
- Trend to higher farrowing rate, litter size und piglet index
- Better results especially in warm insemination periods
- More physiological acting in the hypothalamushypophysis-ovary-axis
- Compensation of the physiological lack of GnRHrelease
- Useful strategy to compensate SLS

Conclusion

- SLS performs relevance for productivity and economics of a sow herd.
- SLS can be mainly detected in analysis of individual farms.
- SLS may be hidden behind pooled fertility analysis.
- SLS is widely dominated by the management.
- SLS can be limited by a strict gilt management including feeding, housing and animal health status.
- SLS can be prevented by establishing a modern reproduction controll programme

Second Litter Syndrome: Threat or Challenge

Thank you very much for your attention!