

Pre-clinical and clinical trials

Dr. Jordi Montané R&D Department

Mantova, Italy. November 2010

OVERVIEW:

- Product composition: some more details
- Pre-clinical trials:
 - ✓ Safety
 - ✓ Efficacy
- Clinical trials
 - ✓ Safety
 - ✓ Efficacy

Summary of Product Characteristics

Product name: RHINISENG®

Inactivated vaccine against progressive and non-progressive atrophic rhinitis.

Composition:

Active substances:

- Inactivated Bordetella bronchiseptica
- Recombinant Type D P. multocida toxin (PMTr, non-toxic derivative)

Adjuvant:

- Aluminium Hydroxide gel
- OEAE-dex
- Ø Ginseng

Bordetella bronchiseptica

Leifson stain

HIPRA

Bordetella bronchiseptica and NPAR

Challenge strain: **BP-21** = *B. bronchiseptica* 4609* **Phase I strain DNT**+

BP-21 infected

BP-21 CAUSES AR BY ITSELF!

Control

* Ackermann *et al.*, 1991; Register and Ackermann, 1997

Nasal Lesion Score (NLS)

Total Nasal Lesion Score = maximum 18

Turbinate atrophy (0-4 for each turbinate) x 4 turbinates = maximum 16

- 0 No atrophy
- 1 Slight atrophy (less than half scroll is absent) *
- 2 Moderate atrophy (more than half scroll is absent) *
- 3 Severe atrophy (the turbinate bone is straightened) *
- 4 Very severe atrophy (complete or nearly complete disappearance of the turbinate) *

Septum deviation (0-2)

- 0 No deviation
- 1 Very slight deviation
- 2 Deviation of the septum

Bordetella bronchiseptica and NPAR

Challenge strain: **BP-21** = *B. bronchiseptica* 4609 phase I strain DNT⁺

^{a, b, c} Values with different superscripts are statistically different (*p* < 0.05; ANOVA and Mann-Whitney U test).

RHINISENG efficacy was tested against a strain causing NPAR

Pasteurella multocida

Virulence factors:

- Capsula (types A and D in pigs)
- LPS (endotoxins)

• Toxin (PMT)

- ✓ Dermonecrotoxic
- ✓ Mitogenic
- ✓ Increases osteoclastic activity
- ✓ Decreases osteoblastic activity

PMT IS THE KEY FACTOR IN PAR PATHOGENESIS

PMT (Pasteurella multocida toxin)

- ToxA gene (codifying PMT) is in a prophage
- (Siphoviridae). In vivo the lytic cycle of the bacteriophage

allows PMT release (Pullinger et al. 2004). Not secreted in vitro

- Monomeric protein
- Thermolabile exotoxin

Figure from Kitadokoro et al. 2007

RHINISENG CONTAINS A PMT NON-TOXIC DERIVATIVE THAT KEEPS THE IMMUNOGENIC EPITOPES

P. multocida and PAR

Challenge strain: Pm1990 = P. multocida type D NCTC 12178 PMT⁺

PAR was reproduced by experimental infection as follows:

Bb + **Pm** group:

B. bronchiseptica (BP-21) + Toxigenic P. multocida (Pm1990)

Pm group:

Toxigenic P. multocida (Pm1990)

A higher Pm titre was necessary to comply the Eu. Ph requirements than in group Bb + Pm

RHINISENG EFFICACY WAS TESTED AGAINST A HIGHLY PMT PRODUCING STRAIN CAUSING PAR

P. multocida + B. bronchiseptica and PAR

The RHINISENG challenge against PAR could have been performed with a DNT⁻ strain of *B. bronchiseptica*:

Vet Microbiol. 2007 Dec 15;125(3-4):284-9. Epub 2007 Jun 6.

Expression of the dermonecrotic toxin by Bordetella bronchiseptica is not necessary for predisposing to infection with toxigenic Pasteurella multocida.

Brockmeier SL, Register KB.

Respiratory Diseases of Livestock Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, IA 50010, USA. susan.brockmeier@ars.usda.gov

RHINISENG EFFICACY WAS TESTED AGAINST A VERY POTENT CHALLENGE

Adjuvant selection

A challenging step in RHINISENG[®] development!

After testing a lot of different candidates, the best option:

AI(OH)₃ + DEAE-dex + Ginseng

Why this aqueous adjuvant combination?

- **DEAE-dex** greatly potentiates seroconversion against PMT.
- **GINSENG** allows to reduce the concentration of DEAE-dex, thus reducing the body temperature increase caused by vaccination, while increasing the antibody levels against PMT.
- Aluminium hydroxide has an antigen depot effect.

PRE-CLINICAL TRIALS

Reduction of atrophic rhinitis lesions (NLS)

After the basic vaccination plan (vac + revac):

After boosting vaccination:

^{a,b} Different superscripts indicate statistical differences between groups (p < 0,05, t-test for independent samples).

Pre-clinical trials: SAFETY in gilts

Pre-clinical trials: SAFETY in gilts

Low temperature increases (complying with E.Ph. requirements)

Pre-clinical trials: SAFETY in gilts

- No effects on **REPRODUCTIVE PERFORMANCE** were observed.
- LOCAL REACTIONS: a transient slight swelling of less than 2-3 cm detected only by palpation. The most common finding is a spot of less than 1 cm at the injection site.
- **HISTOLOGICAL REACTIONS: granulomatous** inflammatory reaction (associated mainly to Al(OH)₃) [Valtulini et al., 2005]. WHO report no. 595 states that "development of a small granuloma is inevitable with vaccines adjuvanted with aluminium, and is to be considered necessary to the efficacy of the adjuvant".

RHINISENG vs COMPETITOR

RHINISENG induces a significant lower body temperature increase

* Statistical differences between RHINISENG and Competitor vaccine (p < 0,05, mixed model ANOVA). ↑ Statistically significant temperature increase 6h after revaccination in Competitor vaccine (p < 0,05, mixed model ANOVA).

RHINISENG vs COMPETITOR

Reduction of atrophic rhinitis lesions

RHINISENG = **COMPETITOR**

^{a, b} Different superscripts indicate statistical differences among treatment groups (p < 0.05, One-Way ANOVA and Mann-Whitney U test).

CLINICAL TRIALS

Clinical trials:

- Three different farms:
 - ✓ Presenting AR clinical signs
 - ✓ Seropostive to PMT and Bb
 - ✓ Isolation of toxigenic Pm and/or Bb
- Negative control group
- Full-blinded basis
- Vaccination + revaccination (1st)/ Boosting (2nd)
- Pigs (1st farrowing) monitored until slaughter age

Reduction of atrophic rhinitis lesions

^{a,b} Different superscripts indicate statistical differences between groups (p < 0.05, multivariate ANOVA).

Serology against PMT (ELISA PMT Kit) in sows

^{a,b} Different superscripts indicate statistical differences between groups (p < 0.05, Fisher exact test).

Serology against B. bronchiseptica (ELISA IgG1) in sows

^{a,b} Different superscripts indicate statistical differences between groups (p < 0.05, multivariate ANOVA).

Serology against *B. bronchiseptica* (MAT test) in sows

^{a,b} Different superscripts indicate statistical differences between groups (p < 0.05, Mann-Whitney U test).

Serology in 5-7 day old piglets

B. bronchiseptica

PMT

^{a,b} Different superscripts indicate statistical differences between groups (p < 0.05, multivariate ANVOVA, Mann-Whitney U test and Fisher exact test, respectively).

Age at slaughter (⊽ 3 days): pigs from 1st farrowing

^{a,b} Different superscripts indicate statistical differences between groups (p < 0.05, multivariate ANOVA).

RHINISENG® causes a very **low temperature increase** in gilts/sows under field conditions

* Statistical differences between RHINISENG and Control (*p* < 0,05, multivariate ANOVA).

Reproductive performance 1st farrowing

Number of piglets born alive, stillborn and mummies = CONTROL

	N ^o piglets born alive					
	Mean	n	Standard deviation	Minimum	Maximum	P value
Control	11.905	86	0.317	11.279	12.532	0.676
RHINISENG	12.078	98	0.292	11.502	12.654	0.070

	N ^o stillborn piglets					
	Mean	n	Standard deviation	Minimum	Maximum	P value
Control	1.248	86	0.202	0.850	1.647	0.622
RHINISENG	1.113	98	0.186	0.747	1.480	0.022

	Nº mummified piglets						
	Mean	n	Standard deviation	Minimu m	Maximum	P value	
Control	0.148	86	0.066	0.019	0.278	0.656	
RHINISENG	0.188	98	0.060	0.070	0.306	0.050	

No abortions were recorded

Reproductive performance 2nd farrowing

Number of piglets born alive, stillborn and mummies = CONTROL

		N ^o piglets born alive						
	Mean	n	Standard deviation	Minimum	Maximum	P value		
Control	10.36	53	2.10	6	16	0 171		
RHINISENG	11.25	65	2.51	3	17	0.171		

		N ^o stillborn piglets						
	Mean	n	Standard deviation	Minimum	Maximum	P value		
Control	0.57	53	1.08	0	5	0 720		
RHINISENG	0.51	65	0.87	0	3	0.730		

		N ^o mummified piglets						
	Mean	n	Standard deviation	Minimum	Maximum	P value		
Control	0.15	53	0.57	0	3	0.406		
RHINISENG	0.15	65	0.57	0	3	0.490		

No abortions were recorded

Summarising...

 RHINISENG IS EFFICACIOUS UNDER LABORATORY AND FIELD CONDITIONS WITH DEMONSTRATED BENEFICIAL EFFECTS UNTIL SLAUGHTER AGE

• RHINISENG IS SAFE FOR SOWS AND GILTS. RHINISENG DOES NOT ALTER THEIR REPRODUCTIVE PERFORMANCE.

THANK YOU VERY MUCH FOR YOUR ATTENTION!!!

Bibliographic references

- Ackermann, M.R., Rimler, R.B. and Thurston, J.R. (1991). Experimental model of atrophic rhinitis in gnotobiotic pigs. *Infection and Immunity*, 59: 3626-3629.
- Brockmeier S.L. and K.B. Register. 2007. Expression of demonecrotic toxin is not necessary for predisposing to infection with toxigenic *Pasteurella multocida*. *Vet. Microbiol.*, 125: 284-289.
- De Jong, M.F. (1999). Progressive and Nonprogressive Atrophic Rhinitis. En: *Diseases of Swine*. Ed. Straw, B.E., D'Allaire, S., Mengeling, W.L. y Taylor D.J. Iowa University Press, Ames (IA). Pp. 355-384.
- Kitadokoro, K., Kamitani, S. Miyazawa, Hanajima-Ozawa, M. Fukui, A., Miyake M. and Y. Horiguchi. 2007. Crystal structures reveal a thiol protease-like activity triad in the C-terminal region of *Pasteurella multocida* toxin. *Proc. Natl. Acad. Sci. USA*, 104: 5139-5144.
- Pullinger. G.D., Bevir, T. and Lax, A. J. 2004. The *Pasteurella multocida* toxin is encoded within a lysogenic bacteriophage. *Mol. Microbiol.*, 51: 255-269.
- Register, K.B. and Ackermann M.R. (1997). A highly adherent phenotype associated with virulent Bvg+-phase swine isolates of *Bordetella bronchiseptica* grown under modulating conditions. *Infection and Immunity*, 65: 5295-5300.
- Valtulini S., Macchi C., Ballanti P., Cherel Y., Laval A., Theaker J.M., Bak M., Ferretti E. and Morvan H. (2005). Aluminium hydroxide-induced granulomas in pigs. *Vaccine* 23: 3999-4004.
- World Health Organization. (1976). Immunological adjuvants. In: *Technical Report Ser. no. 595*. Geneva: World Health Organization. Pp. 3-40.

