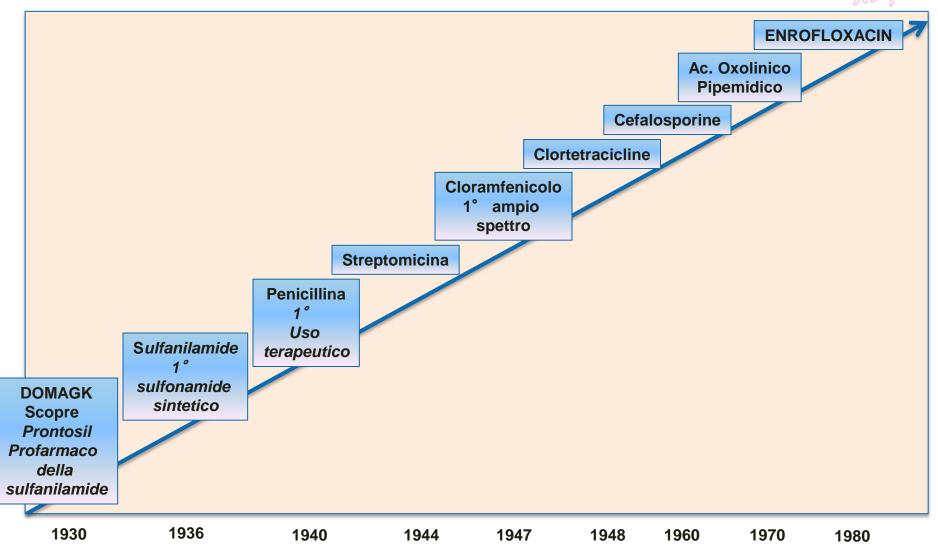
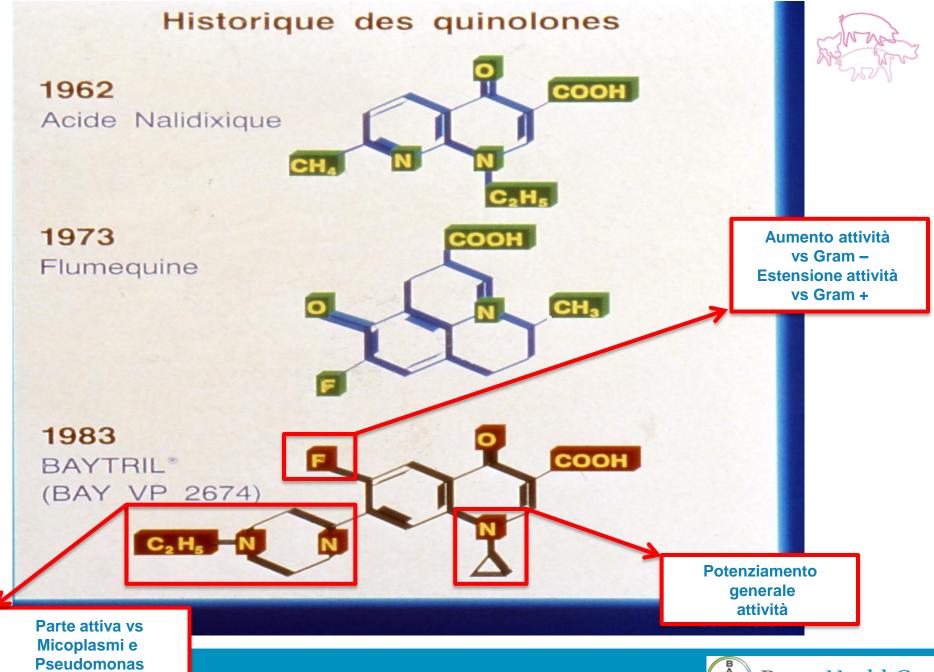


FLUORCHINOLONI

Tutto quello che avreste voluto sapere ma non avete mai avuto il coraggio di chiedere!

Le grandi tappe della chemioterapia antibatterica: i principali ricercatori e le loro scoperte





1° microrganismo visto al microscopio

Cronistoria dell'antibioticoterapia

Bayer HealthCare

I Fluorchinoloni di III Generazione

ENROFLOXACIN


- Scoperta: 1983 (BAYER, BAY VP 2674)
- Formula bruta: C₁₉H₂₂FN₃O₃
- Peso molecolare: 395,5 g/mol

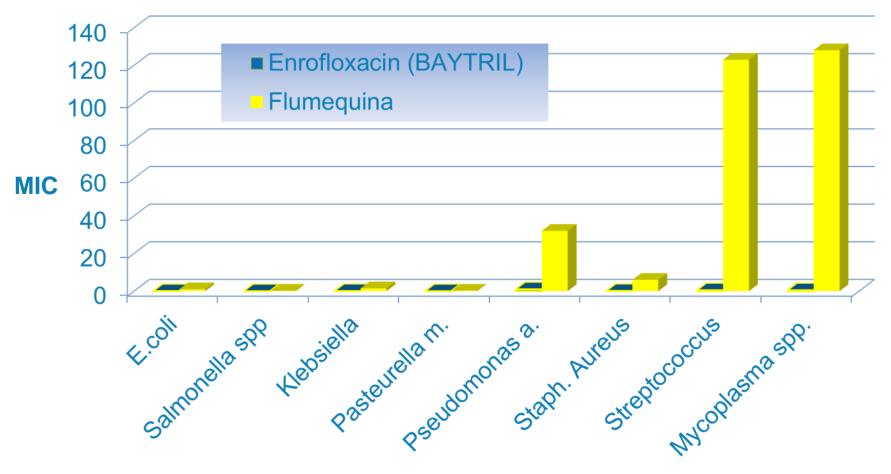
DANOFLOXACIN

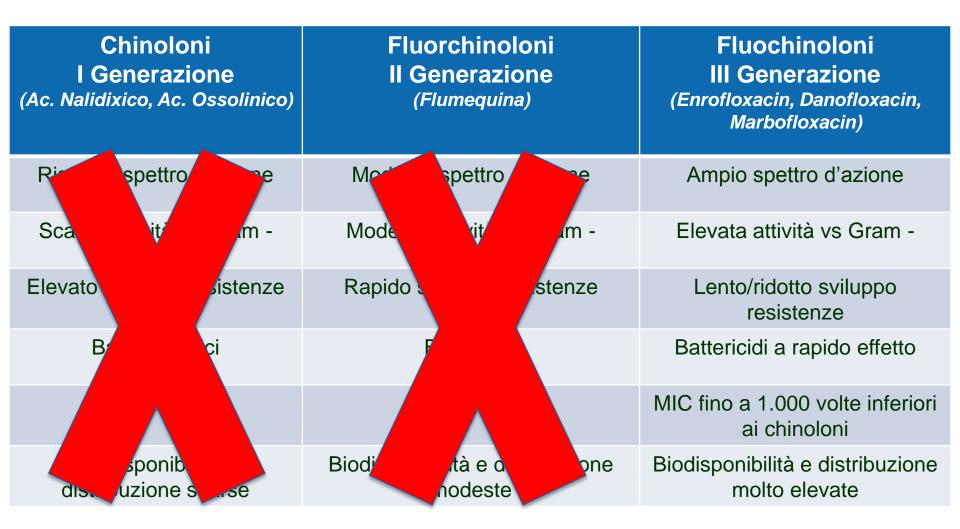
- Scoperta: seconda metà anni 80 (Pfizer)
- Formula bruta: C₁₉HO₂₀FN₃O₃
 - Peso molecolare: 357,4 g/mol

MARBOFLOXACIN

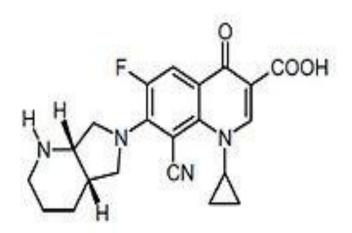
- Scoperta: prima metà anni 90 (Roche 09-1168)
- Formula bruta: C₁₇HO₁₉FN₄O₄
- Peso molecolare: 362,4 g/mol

Differenze tra classi di Chinoloni


Chinoloni I Generazione (Ac. Nalidixico, Ac. Ossolinico)	Fluorchinoloni II Generazione (Flumequina)	Fluochinoloni III Generazione (Enrofloxacin, Danofloxacin, Marbofloxacin)
Ristretto spettro d'azione	Modesto spettro d'azione	Ampio spettro d'azione
Scarsa attività vs Gram -	Modesta attività vs Gram -	Elevata attività vs Gram -
Elevato sviluppo resistenze	Rapido sviluppo resistenze	Lento/ridotto sviluppo resistenze
Batteriostatici	Battericidi	Battericidi a rapido effetto
MIC elevate	MIC medie	MIC fino a 1.000 volte inferiori ai chinoloni
Biodisponibilità e distribuzione scarse	Biodisponibilità e distribuzione modeste	Biodisponibilità e distribuzione molto elevate


Differenze tra classi di Chinoloni

Chinologico, Ac. No. vico, Ac.	zione	Fluorchinoloni II Generazione (Flumequina)	Fluochinoloni III Generazione (Enrofloxacin, Danofloxacin, Marbofloxacin)
Rist	one	Modesto spettro d'azione	Ampio spettro d'azione
Scarsa	Fram -	Modesta attività vs Gram -	Elevata attività vs Gram -
Elevato s	esistenze	Rapido sviluppo resistenze	Lento/ridotto sviluppo resistenze
		Battericidi	Battericidi a rapido effetto
ele		MIC medie	MIC fino a 1.000 volte inferiori ai chinoloni
isponil distribuzione		Biodisponibilità e distribuzione modeste	Biodisponibilità e distribuzione molto elevate

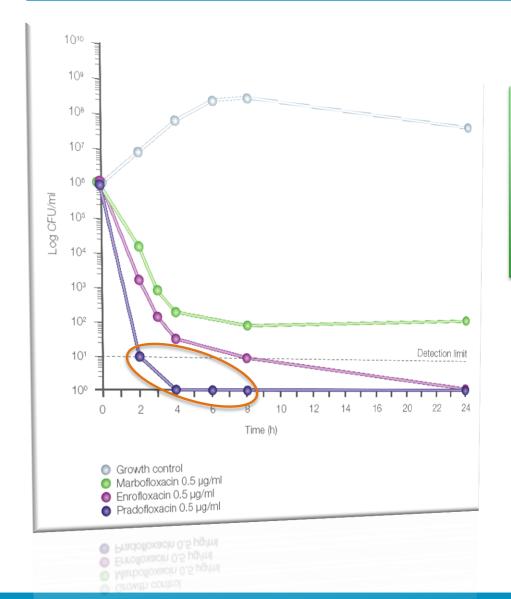


Differenze tra classi di Chinoloni

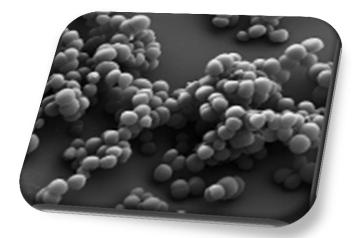
I Nuovi Fluorchinoloni

PRADOFLOXACIN

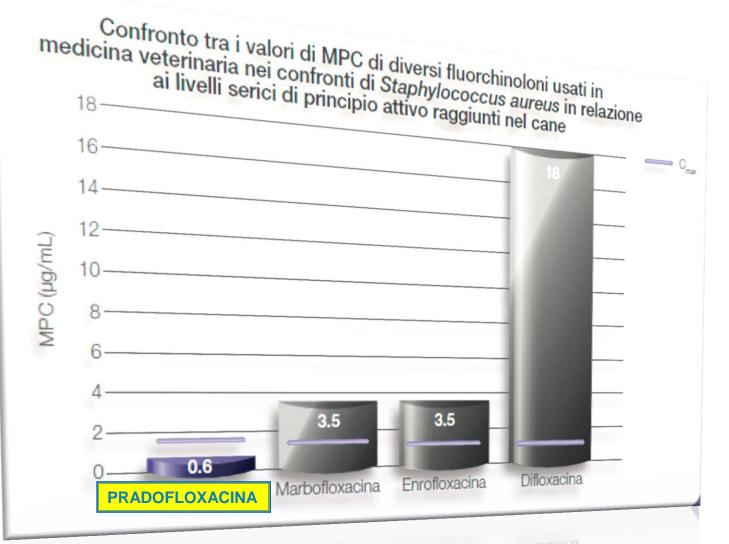
- Scoperta: 1998 (BAYER, BAY VP 2674)
- Formula bruta: C₂₁H₂₁FN₄O₃
 Peso molecolare: 396,4 g/mol


Compound	Escherichia coli			ococcus nedius
	MIC ₉₀	MPC ₉₀	MIC ₉₀	MPC ₉₀
Pradofloxacin	0.015	0.20	0.06	0.35
Enrofloxacin	0.03	0.35	0.12	2.5
Marbofloxacin	0.03	0.3	0.25	2.5

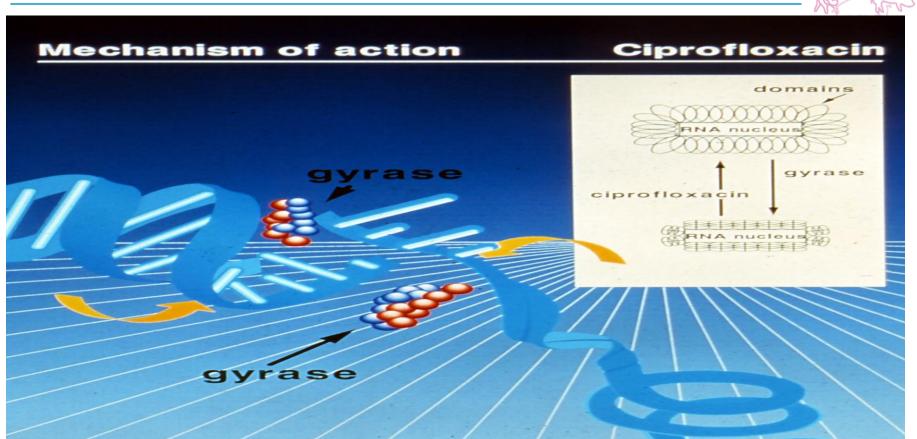
Wetzstein, HG 2005. Comparative mutant prevention concentrations of pradofloxacin and other veterinary fluoroquinolones indicate differing potentials in preventing selection of resistance. Antimicrob. Agents Chemother. 49:4166-4173.



I Nuovi Fluorchinoloni

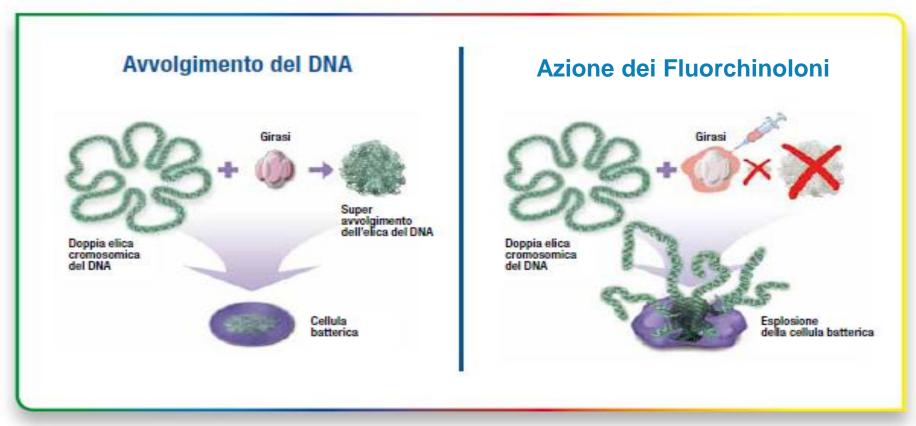


Tempo di abbattimento di Enrofloxacin, Marbofloxacin e Pradofloxacin nei confronti di Staphylococcus pseudintermedius



I Nuovi Fluorchinoloni

Meccanismo d'azione


I Fluorchinoloni agiscono sia nei confronti dei germi in attiva moltiplicazione che quiescenti, agendo per inibizione della sintesi del DNA batterico.

Il principale bersaglio è la DNA-girasi (topoisomerasi II e IV) enzima responsabile della replicazione del DNA

Meccanismo d'azione

L'effetto battericida dei Fluorchinoloni è dovuto all'esplosione batterica, dovuta alla rottura dei cromosomi contenuti nella cellula batterica

Spettro d'azione & MIC

Confronto delle MIC₉₀ (µg/ml) in batteri di campo nella specie suina

Germe	Danofloxacin (A)	Marbofloxacin (B)	Enrofloxacin (C)
Pasteurella multocida	0,125 (39 ceppi)	0,029 (45 ceppi)	0,015 (322 ceppi)
Staphylococcus suis	-	0,217	0,12 (84 ceppi)
Bordetella bronchiseptica	2,0 (41 ceppi)	0,794	0,5 (171 ceppi)
Actinobacillus pleuropneumoniae	0,125 (127 ceppi)	0,027 (10 ceppi)	0,03 (<u>587 ceppi</u>)
Escherichia coli	0,125 (52 ceppi)	0,21	0,06 (406 ceppi)
Erysipelothrix rhusiopathiae	-	0,06-0,12	0,06 (12 ceppi)
Mycoplasma hyopneumoniae	0,062 (36 ceppi)	0,06 (10 ceppi)	0,025 (68 ceppi)

⁽A) Materiale Tecnico Pfizer

⁽B) Centro di ricerca Vetoquinol. Dossier di registrazione di Marbocyl 10% e Drugeon et al., 1997

⁽C) Scheer, 1987; Berg, 1988; Aucoin, 1990; Perscott e Yelding, 1990; Mevius et al., 1990; Schimmel et al. 1990; Sakaguchi et al. 1992

Post-Antibiotic-Effect (PAE)

☐ Cosa è:

La temporanea soppressione della crescita batterica dopo esposizione ad un antimicrobico.

□ Come si misura:

E' il tempo necessario per una coltura batterica a riprendere la normale crescita logaritmica dopo la sospensione dell'antimicrobico.

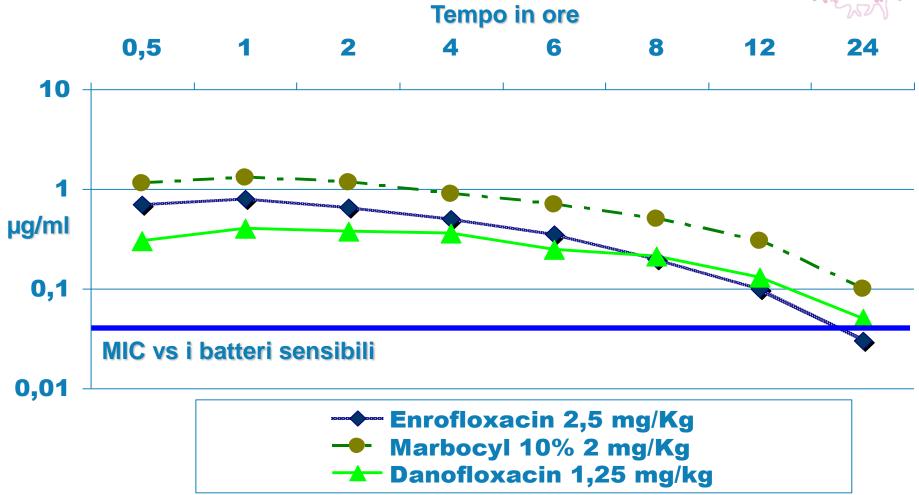
☐ Cosa significa:

Durante questo periodo il metabolismo batterico è diminuito, i batteri sono più sensibili alla fagocitosi e non si assiste ad un immediato ripristino della loro crescita, anche quando le concentrazioni dell'agente terapeutico nel siero/tessuti scendono al di sotto dei valori di MIC.

□ Durata della PAE:

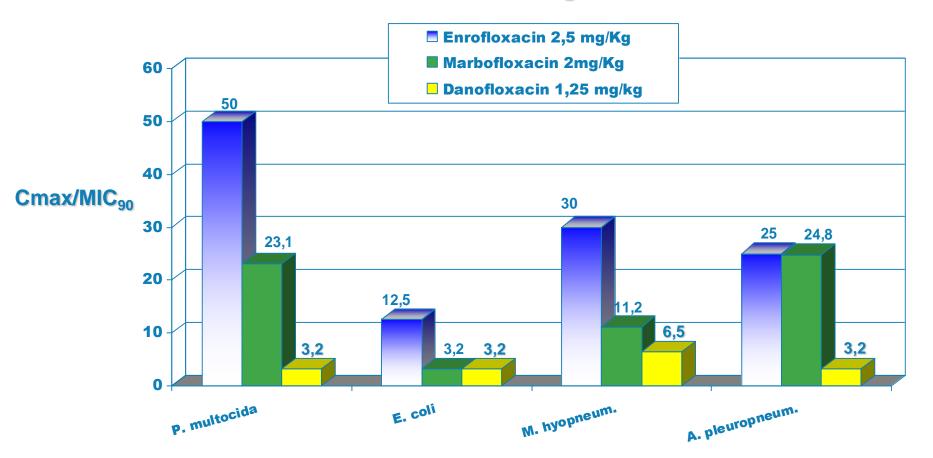
- Marbofloxacin: ca. 4,6 ore (Materiale tecnico Vetoquinol)

- Enrofloxacin: ca. 3,3 ore (Gicquel & Sanders, 1997)

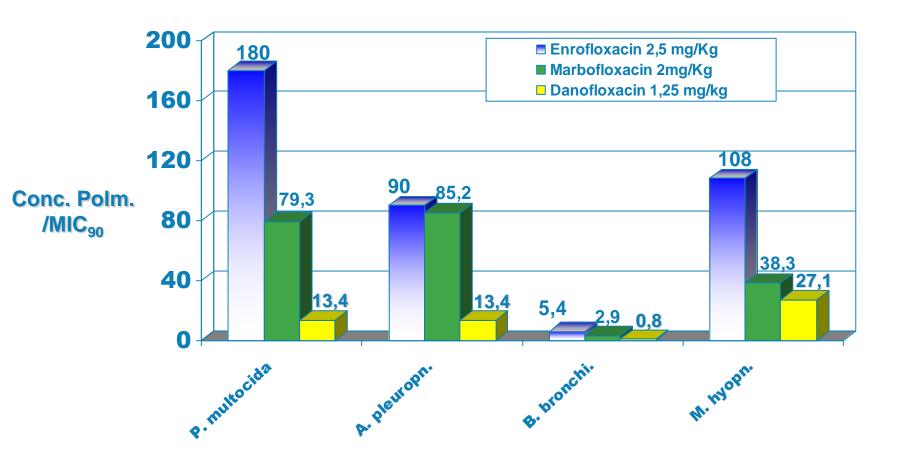

- Danofloxacin: ca. 2 ore (Materiale tecnico Pfizer)

Parametro	Danofloxacin (1,25 mg/kg)	Marbofloxacin (2 mg/kg)	Enrofloxacin (2,5 mg/kg)
Metabolismo (1)	Efficacia come tale	Efficacia come tale	Efficacia come tale e come metabolita (Ciprofloxacin)
Metabolismo (2)	Eliminazione con le urine (ca. 45%) e con le feci (ca. 55%)	Eliminazione perlopiù con le urine (ca. 70%) e parziale nelle feci (ca. 30%)	Eliminazione parziale con le urine (ca. 30%)e perlopiù per via epatica (ca. 70%)
Legame proteico	44%	30%	27%
C _{max} (µg/ml)	0,4	0,67	0,47
T _{1/2} eliminazione (ore)	6,99	8,7	13,12
AUC (μg.ore/ml)	1.94	8,84	7,53

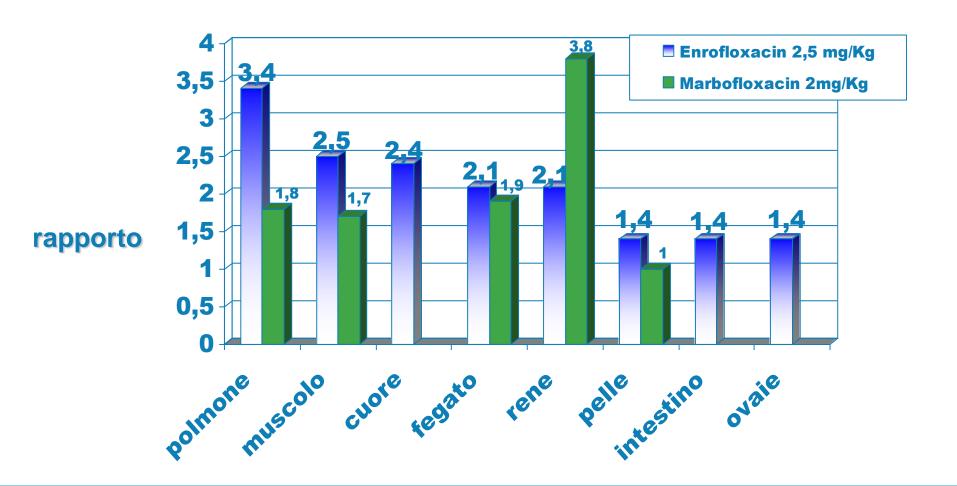
J. Le Carrou et al. (2006); Richez p. et al. (1997)



Heinen (1998); Pfizer Data Sheet (1996)



Rapporto tra MIC₉₀ e Cmax nel suino


Tale rapporto permette di "prevedere" l'efficacia di un antibiotico su un determinato germe

Rapporto tra MIC₉₀ e concentrazione polmonare nel suino Permette di ottenere la quantità di antibiotico in grado di inibire i germi a livello tissutale

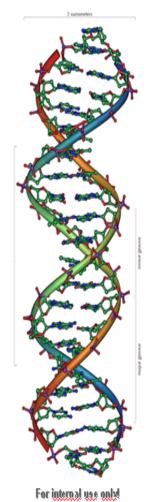
Rapporto tra le concentrazioni tissutali/plasmatiche nel suino

Concentrazione Preventiva Mutante: Nuove possibilità di rapido ed elevato successo in antibioticoterapia

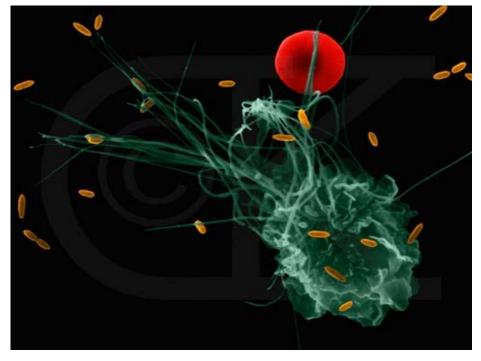
La frequenza di mutazione verso gli antiinfettivi è

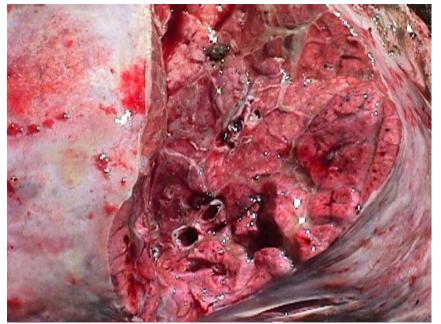
generalmente bassa

on Education, Inc., publishing as Benjamin Cummings.


MUTAZIONE:

- Alterazione del DNA batterico
- Trasmessa alla successiva generazione
- Indotta da agenti chimici o fisici


BASSA FREQUENZA:
Da 10⁻⁶ a 10⁻⁹
Tra 1 batterio su 1 milione e
1 batterio su 1 miliardo


Bağl Yázguez 11.09

AH-GM-GVS

O il sistema immunitario riesce a controllare questi mutanti oppure

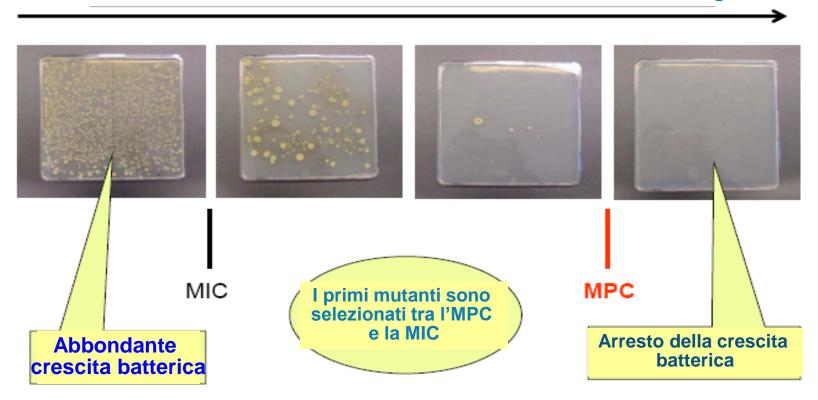
Come definire / determinare / misurare la potenza dell'attività antimicrobica dei fluorchinoloni

La Concentrazione Minima Inibente (MIC)

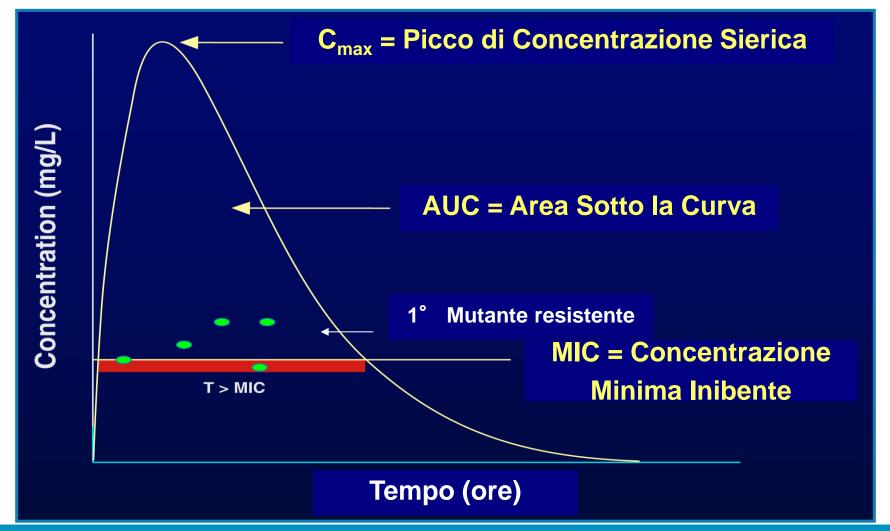
La concentrazione di farmaco che inibisce la crescita di un batterio (MIC₅₀, MIC₉₀)

La Concentrazione Minima Battericida (MBC)

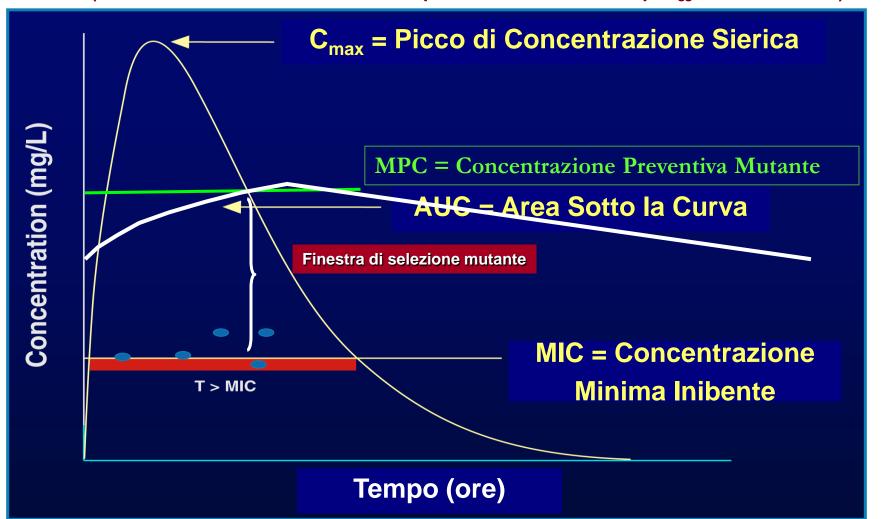
La concentrazione che causa una riduzione di ≥3 log₁₀ delle colture cellulari batteriche dopo 24 ore di esposizione


La Concentrazione Mutante Preventiva (MPC)

La concentrazione di farmaco che inibisce la selezione della prima mutazione resistente nella popolazione batterica


- Normalmente, per una MIC è utilizzata una concentrazione batterica di circa 10⁵ (100. 000 batteri), ma le infezioni possono essere causate da un numero maggiore di germi
- ❖ Le basi di calcolo per l'MPC sono di aumentare la concentrazione batterica a 10¹⁰ batteri, come nel caso delle infezioni più gravi

Aumento della concentrazione dei Fluorchinoloni in una coltura di Agar



Cosa accade dopo il trattamento?

Più elevate sono le C_{max} e l'AUC e inferiori risultano le selezioni

mutanti (riduzione della "finestra" di selezione mutante e minore possibilità di selezionare un secondo passaggio di resistenza batterica)

Concentrazione Preventiva Mutante Come è calcolato il successo dell'MPC

Sensibilità in vitro di diversi patogeni suini nei confronti di Enrofloxacin P. multocida E. coli A. pleuropneumonia **MPC**_{on} **MIC**_{qn} **MPC**_{on} MICqn MIC₉₀ MPC_{qn} 0.125 0.016 0.016 0.25 0.063 0.125

Successo

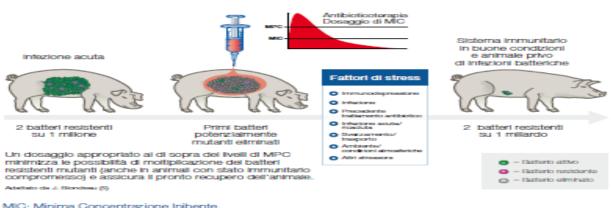
Soglie farmacologiche/microbiologiche di Enrofloxacin verso 3 diversi patogeni suini				
Pathogen	C _{max} /MIC ₉₀ *	C _{max} /MPC ₉₀ *	AUC/MIC ₉₀	AUC/MPC ₉₀
E. coli	87	5.6	856	55
P. multocida	87	11	856	110
A. pleuro- pneumoniae 22 5.6 218 55				
*based on 5 n	ng/kg dose.			

La concentrazione sierica di Enrofloxacin (5 mg/kg) eccede quella della finestra di selezione mutante per ca. 20 ore dalla somministrazione

Cmax / MIC: > 12

AUC / MIC: >125

AUC /MPC: >22


ANTIBIOTICOTERAPIA senza una appropriata concentrazione di antibiotico nel siero e nei tessuti

MIC: Minima Concentrazione Inibente; MPC: Concentrazione Preventiva Mutante.

ANTIBIOTICOTERAPIA

con conseguimento di livelli superiori all'MPC (Concentrazione Preventiva Mutante)

NON sono descritti fenomeni di resistenza batterica mediata da plasmidi per i Fluorchinoloni Gli unici possibili meccanismi con cui i Fluorchinoloni possono indurre resistenze sono le mutazioni I Fluorchinoloni inducono mutazioni con frequenza assai minore rispetto ai congeneri più «vecchi» (es. Flumequina) Resistenze crociate tra i «vecchi» e i nuovi Fluorchinoloni NON sono conosciute Possono invece esistere resistenze crociate tra i «nuovi» Fluorchinoloni (Enrofloxacin, Danofloxacin, Marbofloxacin)

Prevalenza della <u>Resistenza</u> di diversi antibatterici Fluorchinoloni su ceppi di *Actinobacillus pleuropneumoniae* biotipo 1 isolati negli anni 2002-2006

Antibiotico	2002	2003	2004	2005	2006	Media
Danofloxacin	7%	3%	0%	12%	0%	4,6%
Enrofloxacin	1%	3%	0%	10%	0%	2,9%
Marbofloxacin	1%	5%	0%	12%	3%	4,3%

Prevalenza della <u>Resistenza</u> di diversi antibatterici Fluorchinoloni su ceppi di *Pasteurella multocida* isolati negli anni 2002-2006

Antibiotico	2002	2003	2004	2005	2006	Media
Danofloxacin	0%	2%	6%	2%	4%	2,8%
Enrofloxacin	1%	3%	2%	1%	3%	1,9%
Marbofloxacin	1%	2%	2%	1%	2%	1,6%

Prevalenza della <u>Resistenza</u> di diversi antibatterici Fluorchinoloni su ceppi di *Haemophilus parasuis* isolati negli anni 2002-2006

Antibiotico	2002	2003	2004	2005	2006	Media
Danofloxacin	17%	6%	17%	8%	11%	10,2%
Enrofloxacin	19%	0%	0%	0%	11%	7,0%
Marbofloxacin	0%	0%	20%	0%	11%	3,6%

Prevalenza della Resistenza di diversi antibatterici Fluorchinoloni su ceppi di Escherichia coli isolati negli anni 2002-2006

Antibiotico	2002	2003	2004	2005	2006	Media
Danofloxacin	14%	15%	21%	32%	33%	24,8%
Enrofloxacin	5%	13%	20%	31%	33%	23,1%
Marbofloxacin	5%	14%	15%	29%	32%	20,8%

Sensibilità antimicrobica di alcuni batteri patogeni suini a Baytril[®] Programma di monitoraggio delle farmacoresistenze in Germania: anni 1993-2010

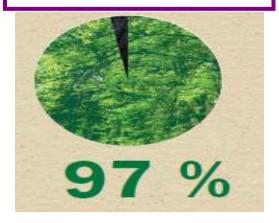
Sono stati analizzati 3497 isolati batterici suini (10)

Specie batterica	Numero di isolati	% di resistenza
P. multocida	647	О
A. pleuropneumoniae	113	0
Str. suis	142	0
H. parasuis	83	0
E. coli	2.111	5
B. bronchiseptica	494	7,1*
Salmonella spp	357	0

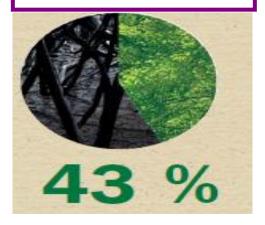
^{*} La % di resistenza batterica è diminuita negli ultimi 5 anni del programma di monitoraggio al 5%.

Le risultanze di questo programma di monitoraggio evidenziano l'elevata sensibilità dei batteri patogeni suini a Baytril[®], anche dopo 20 anni di diffuso impiego.

Fenomeni di farmacoresistenza risultano assenti per *P. multocida, Salmonella spp., A. pleuropneumoniae, S. suis* e *H. parasuis* e limitati per *B. bronchiseptica* ed *E. coli.*



L'EVOLUZIONE DELLE FARMACORESISTENZE


Percentuale di E. Coli (volatili) sensibili all'Enrofloxacin

Francia: anno 2006 SOLO BAYTRIL® 10%

Risultati ottenuti da un programma di monitoraggio delle farmacoresistenze, antibiogrammi, in Francia nel 2006 in 27 differenti laboratori

Spagna: anno 2005 SOLO Generici

Risultati ottenuti da un programma di monitoraggio delle farmacoresistenze, antibiogrammi, in Spagna nel 2005

Tossicità ed effetti collaterali

9	
- 55	Wall of the same o
. 0.5	2020

Parametro	Danofloxacin	Marbofloxacin	Enrofloxacin
Reazioni avverse	Nessuna reazione avversa fino a 5 volte il dosaggio autorizzato (2 mg/kg)	Nessuna reazione avversa fino a 5 volte il dosaggio autorizzato (1,25 mg/kg)	Nessuna reazione avversa fino a 5 volte il massimo dosaggio autorizzato (5 mg/kg)
Immunosoppressione/ Embriotossicità/ Mutagenesi/ Teratogenesi	Nessuna riportata	Nessuna riportata	Nessuna riportata
Interazioni	Evitare la somministrazione contemporanea di Macrolidi e/o tetracicline (fenomeni antagonismo)	Evitare la somministrazione contemporanea di Macrolidi e/o tetracicline (fenomeni antagonismo)	Evitare la somministrazione contemporanea di Macrolidi e/o tetracicline (fenomeni antagonismo)
Uso in gravidanza	Scelta lasciata a valutazione costo/beneficio del Veterinario	Nessuna controindicazione	Sicuro l'impiego in gravidanza

Danofloxacin

> 2.000 mg/Kg Equivale a 1.600 volte la

dose terapeutica ripetuta

(1,25 mg/Kg) indicata nel

snino

Marbofloxacin

Enrofloxacin

Tossicità ed effetti collaterali

ECOTOSSICITA' dei FLUORCHINOLONI

- **□Nessuna bioaccumulazione**
- □Significativa fotodegradazione in soluzione
- □ Rapida eliminazione dall'acqua
- □NON tossici per pesci a concentrazioni sature
- **□NON** tossici per il lombrico terrestre
- □NON tossici per la *Daphnia*

Siringabilità

Siringabilità (secondi) di 9 differenti antibiotici iniettabili utilizzati in ambito suinicolo a varie temperature

Antibiotico	0°C	10°C	25°C	40°C
Acqua (controllo)	10	8	7	5
Enrofloxacin 5%	11	8	5	4
Ceftiofur liofilizzato	12	8	7	7
Marbofloxacin 10%	13	9	6	5
Lincomicina + Spectinomicina	13	10	8	7
Danofloxacin 2,5%	17	11	6	6
Ampicillina 10%	464	355	71	31
Ossitetraciclina 10%	612	144	106	57
Florfenicolo 30%	677	588	249	141

Tempo richiesto per espellere 20 ml di prodotto da una siringa di 20 ml (ago 18G x 1,5) usando una pressione costante di 62,5 kPa

Formulazioni & Tempi di sospensione

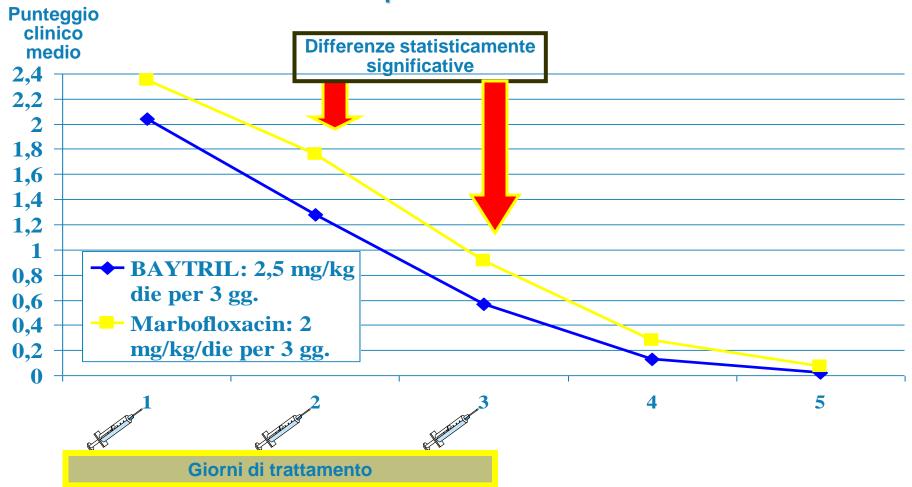
Antibiotico	Formulazione	Via di somministrazione	Tempi di sospensione
Danofloxacin	Soluzione iniettabile 2,5%	IM	3 giorni
Enrofloxacin	Soluzioni iniettabili 5% & 10%	IM	10 giorni
	Soluzione iniettabile monodose	IM	12 giorni
	Soluzioni orali 0,5% & 2,5%	OS	3 giorni (0,5%) 10 giorni (2,5%)
Marbofloxacin	Soluzioni iniettabili 2% & 10%	IM	4 giorni

Volumi di impiego & Schemi di trattamento

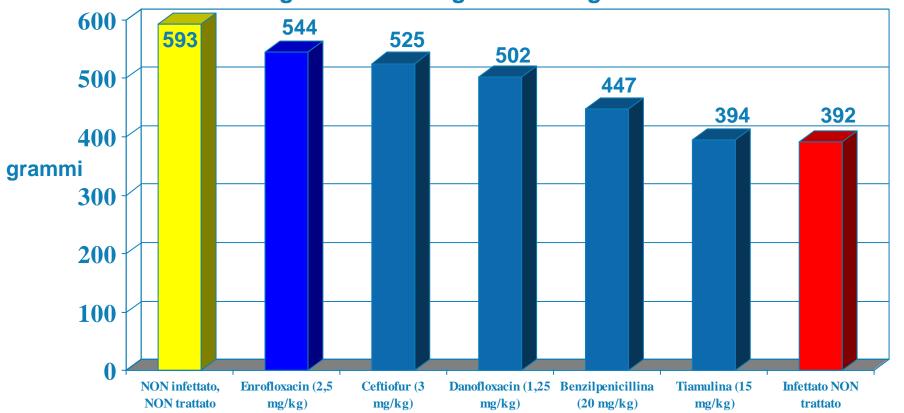
Antibiotico	Formulazione	Volumi di impiego x 20 kg p.v./die	Schemi di trattamento
Danofloxacin	Soluzione iniettabile 2,5%	1 ml	x 3 giorni
Enrofloxacin	Soluzioni iniettabili 5% & 10% Soluzione iniettabile monodose	1-2 ml (5%) 0,5-1,0 ml (10%) 1,5 ml	x 3-5 giorni x 3-5 giorni 1 giorno
	Soluzioni orali 0,5% & 2,5%	10-20 ml (0,5%) 2-4 ml (2,5%)	x 3-5 giorni x 3-5 giorni
Marbofloxacin	Soluzioni iniettabili 2% & 10%	2 ml (2%) 0,4 ml (10%)	x 3 giorni

Indicazioni

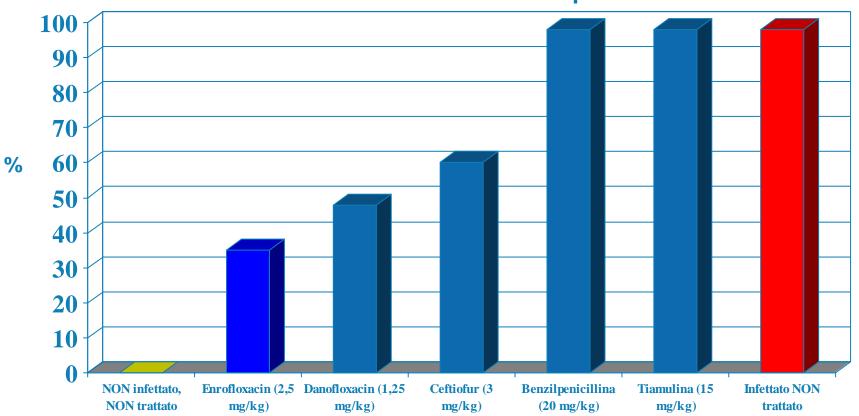
Antibiotico	Formulazione	Indicazioni
Danofloxacin	Soluzione iniettabile 2,5%	 Patologie respiratorie da: P. multocida, A. pleuropneumoniae Patologie enteriche da: E. coli
Enrofloxacin	Soluzioni iniettabili 5% & 10%	 Patologie respiratorie da: Pasteurella sp., Bordetella sp., Haemophilus sp., A. pleuropneumoniae, M. hyopneumoniae Patologie enteriche da: E. coli, Salmonella sp. Sindrome Mastite-Metrite-Agalassia Mastiti acute Metriti
	Soluzione iniettabile monodose	- Patologie respiratorie da: Pasteurella sp. Haemophilus sp., A. pleuropneumoniae
	Soluzioni orali 0,5% & 2,5%	 Patologie respiratorie da: Pasteurella sp., Bordetella sp., Haemophilus sp., A. pleuropneumoniae, M. hyopneumoniae Patologie enteriche da: E. coli, Salmonella sp. Sindrome Mastite-Metrite-Agalassia Mastiti acute Metriti
Marbofloxacin	Soluzioni iniettabili 2% & 10%	 Patologie respiratorie da: P. multocida, A. pleuropneumoniae, M. hyopneumoniae Sindrome Mastite-Metrite-Agalassia

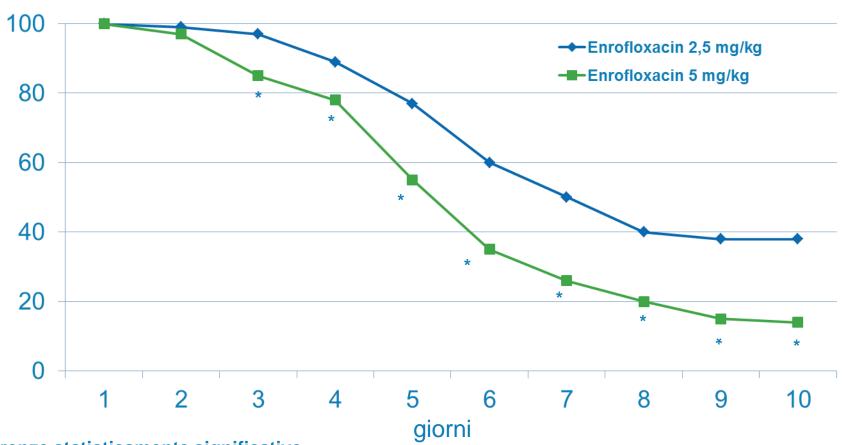

Valutazione dell'affinità di Enrofloxacin vs i globuli bianchi di suini con infezioni provocate da *Actinobacillus pleuropneumoniae*.

Criterio	Effetto dell'Enrofloxacin
Assorbimento dell'Enrofloxacin da parte dei globuli bianchi	Rispetto alle concentrazioni plasmatiche le concentrazioni di Enrofloxacin risultano 9 volte più elevate nei neutrofili e 5 volte più elevate nei macrofagi di suino
Disponibilità di Enrofloxacin da parte dei globuli bianchi	Entro 10 minuti, i neutrofili rendono disponibile il 90% dell'Enrofloxacin, i macrofagi alveolari l'80%
Effetti sulla chemiotassi	In presenza di Enrofloxacin NON è stata rilevata alcuna diminuzione della chemiotassi
Effetti sulla fagocitosi	In presenza di Enrofloxacin NON è stata rilevata alcuna diminuzione della fagocitosi
Effetti sull'attività intracellulare	In presenza di Enrofloxacin, l'attività "killing" dei neutrofili e macrofagi vs <i>Actinobacillus pleuropneumoniae</i> risulta aumentata


Risultati clinici ottenuti in suini con forme acute, subacute o recidive da: *Actinobacillus pleuropneumoniae* e/o *Pasteurella multocida*

Valutazione di 5 differenti trattamenti con antibiotici parenterali in suini infettati sperimentalmente con Actinobacillus pleuropneumoniae

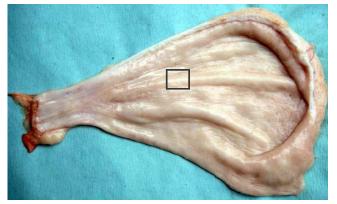

Accrescimento giornaliero dal giorno -1 al giorno +7 dal trattamento


Valutazione di 5 differenti trattamenti con antibiotici parenterali in suini infettati sperimentalmente con Actinobacillus pleuropneumoniae

Percentuale di animali con ascessi polmonari

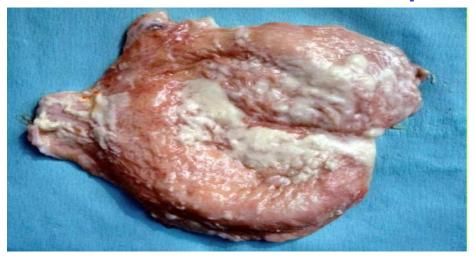
Efficacia di Enrofloxacin a due differenti dosaggi, 2,5 e 5 mg/kg e per 3 giorni consecutivi in suini con forme respiratorie acute

Tempo di remissione della sintomatologia dispnea

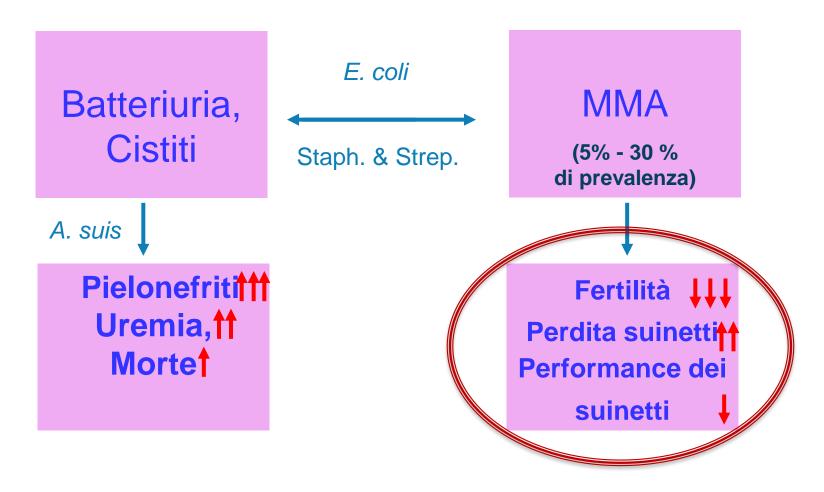

^{*} Differenze statisticamente significative

What was

Metrite Mastite Agalassia/Urinary Tract Infection

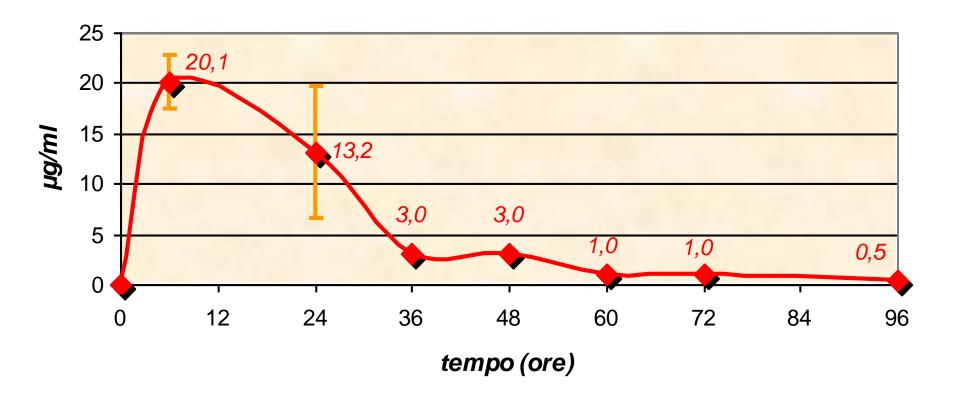

Vescica sana

Vescica con cistite da *E. coli*



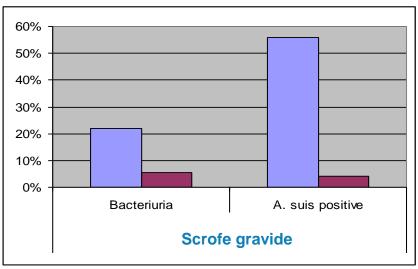
Vescica con cistite da E. coli + Streptococci

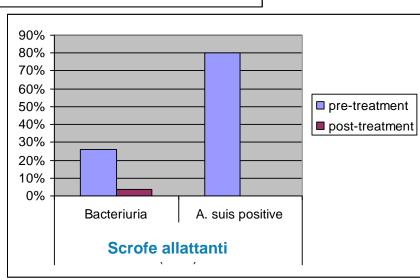
MMA/UTI: Eziologia e conseguenze


Conseguenze dell'MMA/UTI:

(Hoy,S.,2004)

- Maggiore perdita di suinetti: 4 5%
- Minore peso allo svezzamento: in media 0,24 kg/suinetto
- Aumento degli aborti
- Aumento della mortalità delle scrofe
- Diminuzione della dimensione delle nidiate al parto successivo
- Peggioramento del rapporto parto/dimensione nidiata
- Diminuzione del numero delle nidiate
- Diminuzione del numero dei suinetti nel corso della vita riproduttiva della scrofa




Concentrazione urinaria di Enrofloxacin & Ciprofloxacin dopo somministrazione i.m. di Baytril® (2,5mg/kg p.v.)

What I

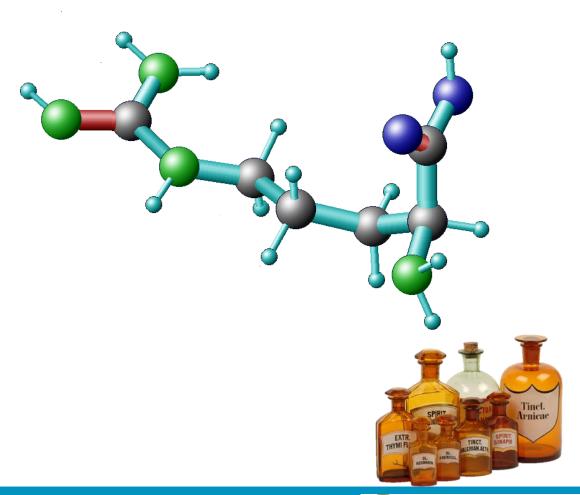
Impiego di Enrofloxacin vs Metrite Mastite Agalassia/Urinary Tract Infection

COMPOSIZIONE QUALI-QUANTITATIVA

1 ml contiene:

Principio attivo:

Enrofloxacin 100 mg


Eccipienti:

Arginine 20 mg

n-Butanol 30 mg

Benzyl alcohol 20 mg

Acqua per iniezioni

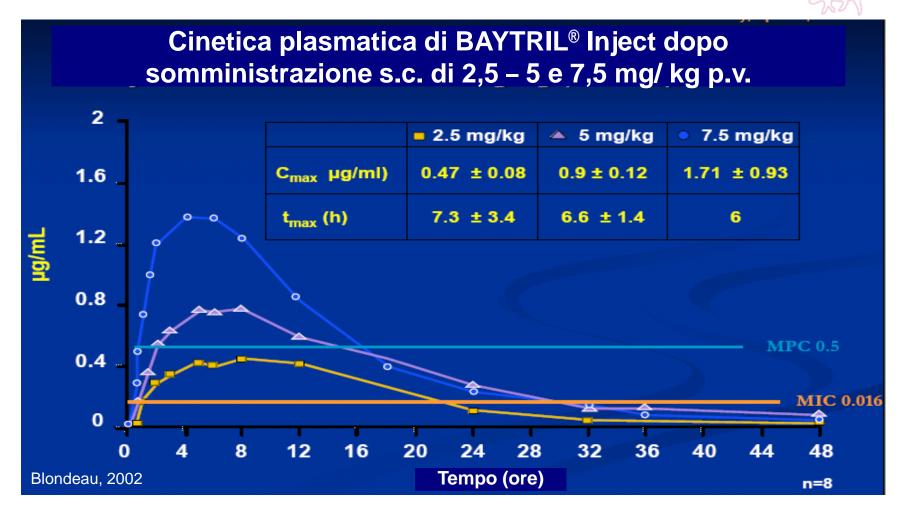
ARGININA: I VANTAGGI

- □ L'ARGININA è un aminoacido <u>largamente diffuso in natura</u>, in gran parte contenuto nelle proteine componenti i tessuti animali.
- □ L'ARGININA svolge <u>importanti funzioni nel metabolismo cellulare</u>: nei mammiferi interviene alla biosintesi dell'urea (ciclo di Krebs).
- ☐ L'ARGININA è <u>immunostimolante</u>, aiuta nella <u>guarigione delle ferite</u>, partecipa alla sintesi della creatinina, <u>rigenera il tessuto del fegato</u>, in dosi elevate brucia i grassi e forma i muscoli.
- L'ARGININA ha <u>azione anabolica</u> (permette all'organismo di utilizzare i principi nutritivi introdotti con gli alimenti per la sintesi di altri materiali complessi come proteine, zuccheri, etc.)

ARGININA: I VANTAGGI

☐ L'ARGININA:

- agisce come veicolo di trasporto immagazzinando ed eliminando l'azoto
- ha un ruolo di primaria importanza nei problemi post-traumatici
- ha un effetto positivo sull'accrescimento corporeo
- ha un effetto <u>sull'aumento di collagene</u> (proteina fibrosa che si trova nelle ossa, nelle cartilagini e in altri tessuti connettivi)
- ha un effetto nel combattere la fatica fisica
- ha un effetto di eliminazione dell'ammoniaca (veleno per le cellule viventi)
- ha un'azione vitale sulla spermiogenesi
- ha una indicazione nei casi di astenia
- ha un impiego (in umana) nei casi di diminuzione della libido
- sembrerebbe uno stimolatore dell'ormone della crescita
- NON ha controindicazioni se non in presenza di: cirrosi, cancro, malattie autoimmuni, emicranie e/o depressioni



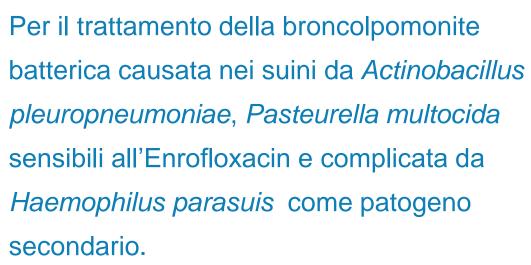
ARGININA: I VANTAGGI

□ SPECIFICATAMENTE:

- 1) Minimizza i possibili danni/irritazioni tissutali a livello del sito di inoculo (abbastanza frequenti in formulazioni iniettabili a pH elevato/alcalino come i fluorchinoloni
- 2) <u>Dissolve il principio attivo Enrofloxacin</u> (particolarmente utile quando in presenza di formulazioni con elevato contenuto es. 10% di principio attivo)
- 3) Consente di raggiungere elevati livelli nel plasma e, soprattutto, a livello dei dei tessuti bersaglio del principio attivo e ciò fin dalle prime ore dal trattamento e con una singola elevata somministrazione

Se il ceppo è sensibile a Enrofloxacin l'MPC è coperto per 15 ore dai dosaggi compresi fra 5 e 7,5 mg/kg.

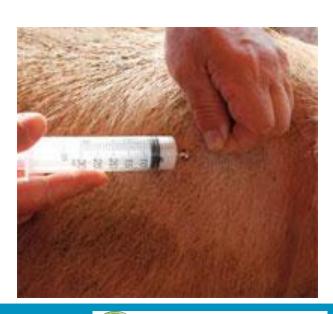
Con 2,5 mg/ kg il trattamento è ugualmente efficace ma se il sistema immunitario dell'animale è


compromesso alcuni mutanti possono sopravvivere

Specie di destinazione SUINI

Indicazioni terapeutiche

Posologia e via di somministrazione


□ Il dosaggio per le infezioni del tratto respiratorio è di 7,5 mg di enrofloxacin/kg p.v. per UNA SINGOLA somministrazione

Ciò corrisponde a 0,75 ml/10kg di formulato.

In ciascun sito di iniezione non devono essere somministrati più di 7,5 ml,

- Nei casi di infezioni respiratorie gravi o croniche, dopo 48 ore può rendersi necessaria una seconda iniezione.
- La somministrazione è per via i.m. nei muscoli del collo dietro l'orecchio (il tappo del flacone può essere perforato con sicurezza fino a 20 volte).

