Hipra Mantova 2010

M.F.de Jong: Ing. DVM. PhD. Curriculum Vitae.

- Born: 1945 Grouw, the Netherlands
- Education:
- 1961- 1964; Ing. degree in Agriculture.
- 1964-1971; Utrecht Vet. Med,
- 1971-1974; Practitioner (ambulant)
- 1975- 1980; Centr. Vet. Inst. (Rotterdam/ Lelystad)
- 1981- 2007; A.H.S. GD- Deventer.
- 2005- 2007; guest prof. Vetmed Vienna.
- 2007 Consulting Vet.

Progressive and non-progressive Atrophic Rhinitis and swine production in the future

Dr M.F. de Jong DVM, PhD.

Hipra Mantova 2010

Content

- History
- Clinical and pathological lesions indicative for AR
- Pathogenicity test with Pm and Bb strains
- Diagnostic improvements
- Serology
- Reduction of profit by AR
- AR schematized
- Treatment and Prevention
- The role of vaccination in PAR eradication
- Future perspectives to reduce losses by AR pathogenic Bb and Pm

Franque, 1829 (Germany) (oldest publication AR)

- The disease develops not at once but gradually and is in the early stages difficult to recognize.
- It starts in the nose with an inflammation of the nasal mucosa and when the disease is prolonging, the mucosa is thickening, the turbinates, the ethmoidal bones and other nose bones degenerate, resulting in malformation of the total nose with thick wrinkles upon or at the sides of the nose resulting in a banding of the snout.
- The breathing is enforced during the disease with the sounds of snuffle and snorting specially heard when drinking. This is the reason such pigs are called ,,Schnuffelnasen,,
- When the disease develops further on, also nose bleeding from both nostrils is noticed even in well nourished pigs. Sometimes breathing is going easier for a while, but sometimes the bleeding is so strong that they die.
- After nose bleeding the pigs are weakened and at this stage of the disease they become thin even with the best food and need to be slaughtered

Schneider 1878 Germany, Nassau

- ,,Schnüffelkrankheit,,(AR) is a disease in pigs characterized by:
- a chronic, incurable, purulent hemorrhagic nasal catarrh with an accumulation of purulent material, blood, mucosal debris in the nasal cavities which makes breathing difficult, after which the animals become cachectic, dispneumatic and may die.

Schneider 1878 (Germany)

- After a post mortem of two pigs which died from RA the following symptoms where noticed:
- The upper jaw is remarkable shortened and thickening,
 =Brachygnatia superior
- A chronic purulent hemorrhagic rhinitis,
- Conchae and ethmoid bones are strongly reduced or rudimentary.
 - = Conchae or Turbinate Atrophy
- A catarrh of conjunctiva and sinuses

Poels 1904; (The Netherlands founder of the Dutch C.V.I.)

- "Schnüffelkrankheit, is a collective name for different local (nasal) diseases in pigs which have snuffle or snorting in common.
 E.g. rhinitis can be caused by: CSV, laryngitis, tonsillitis, tuberculosis, actinomycosis.
- Osteomalacia and skull deformities can rarely be the cause of the snuffle sounds in pigs.
- Its better to forget the name ,,Schnüffelkrankheit,, but relate the chronical disease symptoms to one of the different disease agents.

Poels 1904

- Piglets examined (10 15 days and 3-4month of age) pigs with morfological changes of the turbinates showing chronic rhinitis.
- Reports bacteriological investigations
- In case of chronic rhinitis; Streptococcals were oft isolated from ethmoids and meningitis
- In case of croupeous diphteric rhinitis, Poels isolated bacteria of group septicaemia haemorrhagica.
- Bacterial identification; Gram negative, oval form, non motile, no gas forming from sugars or milk, no liquifaction of gelatin, indol positve.
- Letality in mice within 24 hours (=P.mult.)
- In a rabbit ear-test pathogenic differences were observed.

- Strong ear swelling with a hemorrhagic necrosis followed by mortality in about 5 days (Pasteurella multocida **DNTpos=PAR)**

Rabbit ear test; strong swelling and Dermal necrotic demarcation

Oldest described names of Atrophic Rhinitis

- 1829 Franque (Germany). Schnüffelkrankheit and Nose bleeders
- 1878 Schneider (Germany), Rhinitis pigs
- 1890 (Imminger), Rhininits infectiosa
- 1904 Poels, (the Netherlands), Rhinitis (acute, diphteric, croupeutic, chronic
- 1925 name Rhinitis chronica and osteodystrophy deformans
- 1958 name Atrophic Rhinits Infectiosa, Hutyra, Marek; Rhinitis infectiosa

suum

AR Eradication

- Until the discussion started about B.bronch. in 1956, in most West and East European countries herds suffering from AR were eradicated by slaughtering.
- This was based on the experiences, ,,a farm which once becomes infected stays infected,,

Bordetella bronchiseptica

- Since 1956 Switzer stated that Bordetella bronchiseptica plays an important part in the etiology of AR
- Since 1962 R.F. Ross eo ; B.bronch. induced Porcine Atrophic Rhinitis
- Based on severe turbinate/ concheal atrophy after nasal B. bronch. infection in gnotobiotic colostrum deprived 3 day old SPF piglets

Struggling with the cause of AR

- P.multocida
- 1904 Poels
- 1938 Ratke
- 1953 Gwatkin
- 1956 Brand and Flatla
- 1972 Dirks
- 1975 II´ina and Zasukhin
- 1975 deJong,Akkermans,Bercovich
- 1981 Pedersen and Barfod
- 1982 Pedersen
- 1982 Martineau ao
- 1982 Rutter ao

- B.bronchiseptica
- 1956 Switzer
- 1963 Switzer (sulfa,s)
- 1962 Cross and Claflin
- 1974 Farrington.
- 1975 Pedersen
- 1976 Tornoe and Nielsen
- 1976 Nielsen N.C.
- 1976 Brassine a.o
- 1979 Nakase a.o.
- 1980 Keller and Lorentz
- 1982 Krüger and Horsch

Combating AR

- Since the introduction of B. bronch. as the cause of AR in 1956, different strategies appeared in European countries eg.
- Partly stamping out: slaughtering all pregnant sows 2 weeks before farrowing, making the farm free of piglets, and pigs till 9 month old.
- Medication.

Since chemotherapeutics (sulfa's) and antibiotics (tetracycline) came available also these products were used for treatment.

- Vaccination and serum application. Bb and Pm (autovaccine)
- Improving housing, climate and management
- Combinations.

Tabel 1. Het gemiddelde percentage biggen van ± 6 weken dat bij het bacteriologisch onderzoek van de neusflora vóór en 6 (resp. 14) weken na een ingestelde behandeling besmet was met Bordetella bronchiseptica (B.B.) resp. Pasteurella multocida (P.M.)

				Gem. p besmet voor d behand	erc. te biggen e eling	Gem. perc. besmette biggen <u>+</u> 6 (resp. 14 [*]) weken na het begin van de behandeling	
Bedrijfs- groep no.	Aantal bedrij- ven	Gem. aantal zeugen per bedrijf	Toegepaste behandeling	В.В.	P.M.	в.в.	Р.М.
1	4	54	"all in - all out" in totaal gescheiden kraamafde- lingen	0	34	0	h., h
2a	5	54	penicilline/ streptomycine combinatie	5	34,8	1,4	7,6
2b	1	100	chlooramfeni- col	0	76	0	32
2c	5	84	oxytetra- cycline-HCl	7,5	47,8	1	11,4
2d	5	60	"sulfa"pre- paraten	33	4,8	4,4	2,8
3a	1	120	serum	25	42	0	10
35	3	100	vaccinatie	24,2	25,1	3,3	3,4

Bordetella Anti Serum Therapy Injection at day 3 and 10 with 3 ml sc

Treatment Serum	Serum titer	Number of piglets	Perc. Piglets of 8 weeks with BS			
			grad 0+1	grad 2	grad 3+4	
lot A	1: 25	126	52,4	16,6	31,0	
lot B	1: 100	137	63,5	22,6	13,9	
lot C No	1: 500	122	90,1	7,5	2,4	
treatment		182	28,5	25,7	45,8	

•Influence of changing AR combating strategy from a total stamping out into

partial eradication (in combination with medications)

19581962 total stamping out.
1963-1970 Some provinces starting
partial stamping out + sulfa
medication some continued
total stamping out.
1970-1980 partial stamping out +
medication
1981-1990 AHS program to select and
treat farms based on AR
toxigenic P.mult. by
vaccination and medication
and selecting and
slaughtering severe AR
weaners from participating
farms
1985 Breeding herds certified free of
ARtox.P.m. no AR vaccination allowed

Year	Number of	Year	Number of
	Herds		Herds
1958	325	1971	221
1959	152	1972	229
1960	176	1973	154
1961	52	1974	224
1962	6	1975 ←	344
1963 ←	26	1976	301
1964	16	1977	433
1965	33	1978	550
1966	47	1979	555
1967	40	1980	486
1968	88	1981	690
1969	74	1982	556
1970	87	1983	535
		1984	442

Clinical and pathological lesions indicative for AR

- Sneezing, sharp till snorting
- Lacrimation
- Brachygnatia superior
- Snout deformations, torsion, twisting, bending, wrinkling
- (Endoscopy)
- (Radiography/tomography)

Some clinical and pathological features suspicious for (P)AR

- First SPF pigs showing AR after intra nasal Pm infection with a Pm strain from severe AR diseased pigs
- Different macroscopical features e.g. ventral and dorsal turbinate atrophy, septum deviation, malformation of nasal bones.

Snout scouring method

NR beoordelingsschema transversaleneusdoorsnede (praemolare l à 2).

AR snoutgrading cross-sections (praemolar 1 or 2)

neus1 loor- snede No.	vorm2 Os nasale	septum ³ deviatie	AVC 4	ADC 5	HVC 6	HDC 6
1	convex	0	0 - 0	0 - 0	0 - 0	0 - 0
2	convex	0	0 - 0	0 - 0	0 - 0	0 - 0
3	convex	+	0 - 0	0 - 0	3 - 1	1 - 0
4	dakvormig	0	$1 - 1^{a}$	1 - 0	1 - 0	0 - 0
5	asymmetrisch	+	1 - 1	1 - 2	2 - 1	1 - 0
6	asymmetrisch	++	2 ^b - 1	0 - 2	1 - 1	3 - 1
7	dakvormig	0	2 - 2	0 - 2	1 - 3	0 - 0
8	dakvormig	++	$3 = 3^{C}$	1 - 2	2 - 0	1 - 1
9	dakvormig	+++	2 - 3	2 - 2	1 - 1	1 - 2
10	dakvormig/ plat	+	3 - 4 ^d	3 - 3	1	1 - 0
11	plat	++	3 - 4	3 - 3	1	1 - 2
12	concave	+++	4 - 4	3 - 3	$\mathbf{v} = \mathbf{v}$	3 - 3

Legenda:

1. neus doorsnede No.

2. vormveranderingen Os nasale

normaal = convex, onregelmatig, dakvormig, dakvormig tot
plat, plat, concave.

3. septum deviatie schaal: 0 = rocht, + = gering (mediaan l loopt nog door septum), ++ = duidelijk (mediaan valt not buiten septum), +++ = ernstig.

- 4. AVC: Atrofie Ventrale Conchae
 - gradatie 0 = geen afwijking
 - gradatie 1 = ventrale of dorsale winding gering afwijkend

gradatie 2 = ventrale en dorsale winding beide gering afwijkend of;ventrale of dorsale winding duidelijk aangetast (steeltje)

- vormsel aanwezig zonder (kraak) benige structuur.

5. ADC : Atrofie Dorsale Conchae

gradatie 0 = geen afwijking;

gradatie 1 = gering afwijkend;

gradatie 2 = duidelijk afwijkend;

gradatie 3 = totale atrofie.

Brachygnatia superior; a simple clinical feature for AR scoring

Pathogenicity tests for Bb and Pm

- The Dutch results obtained with fighting Bb alone to control AR were disappointing
- P.multocida appeared every time in such AR herds when Bb was under control
- Question: are there Pm strains with different AR pathogenicity?
- 1975 Investigations started to test different Pm and Bb strains for AR pathogenicity in gnotobiontic colostrum derived SPF piglets

Pathogenicity tests with Bb and Pm strains

SPF piglets kept in isolators

Turbinate atrophy in CD-SPF pigs with an AR pathogenic Bb strain

- In the 3 week old SPF pigs the nasally infected and the contact pigs both showed severe turbinate lesions 4 weeks later
- Bb is motile, has filli and adhere to the nasal mucosa

Turbinate atrophy in CD-SPF pigs with an AR pathogenic Pm strain

- The both intra nasal infected SPF piglets show strong turbinate lesion and bending of the septum.
- The contact pig had slight turbinate lesion but still bending of the septum.
- First time shown that Pm alone can cause AR and could be repeated.
- Pm is non motile and for that reason needs support after transmission

Differences in histopathology between an AR tox+ Bb and a AR tox+Pm strain

The guinea pig skin test; a simple test to select AR toxigenic Bb and Pm strains

- B.bronch. 2 of 4 strains with pos.
 Dermonecrotic Toxin Skin Reaction (no 2 and 3)
- P. mult. guinea pig skin test with 1 pos. DNT reaction (no 2)
- Toxins of Bb and Pm are different. No cross neutralization

Relation between guinea pig skin test and SPF piglet test

Table 3: The results from 18 <u>Pasteurella</u> <u>multocida</u> strains tested in the guinea-pig skintest and in 3-week-old SPF piglets, compared with capsule (c) and somatic (o) serotype.

PM	guinea-	SPF	qualifi-	c-sero-	o-serotypes	
strain	'pig	pigtest	cation ⁵	types		
	in mm	grade of AVC ³	patho- genicity	Carter	Namioka	Heddleston
4/47459	20(48h) ²	3.75	+ + + + + +	D	1	10
5/04041	25(")	3.50		A	5,11,14	Nt **
4/40456	20(")	3.25		D	13	2+4+(7)+12
4/70596	18(")	3.00		D	15	Nt
Pepping	20(")	2.83		D	Nt 4	2+3+11+12
5/09391 ¹	20(")	2.75		D	4	2+4+ 7+12
4/93698	18(")	2.50		D	15	2+4+(7)+12
4/72510	8(72h) ²	1.50	<u>+</u>	D	1	11
4/76628	10(")		+	D	15	2+4+7+12
5/12453 4/75510 Pepping 4/43954 4/44758 4/76593 4/70373 4/99924 4/99011	O(") O(") O(") O(") O(") O(") O(")	0.85 0.50 0.25 0.25 0.00 0.00 0.00 0.00		D D A A A D D	11,13,15 13 5,14,15 Nt 1 11 1 1 12	(11)+(15) 2+3+11+12 2+4+7+12 3+4+12 3+4(6+12) 3+4 Nt 2+4+7+12 2+4+7+12

1, =turkey strain from herd with AR diseased swine

2.48h =diameter of haemorrhagic necrotic center measured after 48 hours
72h =diameter of haemorrhagic necrotic center measured after 72 hours
3.AVC =Atrophy Ventral Conchae of 3-week-old actively infected colostrum deprived Specific Pathogen Free pigs

4.Nt =not to typify

5. =AR pathogenicity expressed by:

- = negative

+ = doubtful

+ = positive

6. _ =haemagglutination test

) weak precipitation lines

Guinea pigs skin tests to select ARtox.positive and negative B.bronch. and P.mult. strains.

Year 1975-79	Strains tested	Guinea pig skin test (DNT)
	B.bronch 157	≻10 mm Ø = ≻152 (97%)
	P. mult. 776	>10 mm Ø =396(51%)<10mm Ø =36 (5%)

Age related sensitivity for a Bb infection in SPF piglets

Table 4: The induction of clinical and pathologic-anatomical lesions of AR after experimental infection with an AR pathogenic B.bronchiseptica strain in SPF* piglets at different ages.

pigs infected age in weeks	number of pigs infected actively or by contact	number of pigs with a positive BS "	average atrophy ventral conchae	number of pigs with septum deviation	number of pigs with clinical AR
3	2 inf.'	1	3	2	10
3	1 cont.	0	3	1	
6	2 inf.	1	1.25	2	0
6	2 cont.	0	0.5	0	0
9 9	2 inf. 1 cont.	0 0	0.75	2 1	0
12 12	2 inf. 1 cont.	0 0	0.5	2 0	0
16	2 inf.	0	0.25	2	0
16	2 cont.		0.25	1	0

') inf. = infected actively; cont. = infected by contact

') BS = Brachygnathia superior

*) SPF = Specific Pathogen Free, colostrum deprived

Age related sensitivity for a Pm (tox+) infection in SPF piglets

Table 5: The induction of clinical and pathologic anatomical lesions of AR after experimental infection with an AR pathogenic P.multocida strain in SPF* piglets at different ages.

pigs infected age in weeks	number of pigs infected actively or by contact	number of pigs with a positive BS"	average atrophy ventral conchae	number of pigs with septum deviation	number of pigs with clinical AR
3 3	2 inf.' 1 cont.	1 0	3.3 1	2	1
6 6	2 inf. 2 cont.	1	3.3 1.3	21	2 1
9 9	2 inf. 2 cont.	0 0	1.8 0.5	1 2	0
12 12	2 inf. 2 cont.	0 0	2.0 0.3	1	0 0
16 16	2 inf. 1 cont.	0 0	1.3 0	2 0	0 0

') inf. = infected actively; cont. = infected by contact
") BS = Brachygnathia superior

) SPF = Specific Pathogen Free, colostrum deprived

Pedersen K.B. and Barfod K. Nord. Vet. Med. 1982-34-293-302.

Mean daily weight gain (g) in relation to the degree of turbinate atrophy.

.

		challenged	d with	
	Turbinate Atrophy	B.bronch. and	B.bronch. and	
		P. mult.	P. mult.	Index
(Hed)		tox	tox. +	
0	0	633.7	633.5 a	100
1	?	623.8	636.9 a	101
2	+	662.7	617.6 a	98
3	++	647.5	568.4 b	90
4	+++		540.0 c	85
		no significant	means with	diff.
		difference	superscrip	ts dif-
		(analysis of	fer signif	icantly
		variance)	P 0,05, t	- test
Diagnostic Improvements

Selective CVGA culture plate with mucoid Pm and whitish B.bronch.

- Culture plate with a mixture of different antibiotics suppresses the commingling flora and favours Pm and Bb after 48-72 h.
- Clindamycine 0,75mg/l
- Vancomycine 4mg/l
- Gentamycine 0,75mg/l
- Amphotericine 5mg/l
- Replacement for Pm
 preselection in mice

Sampling of Pigs: collection of nasal and tonsil- samples

Comparison of the detection of the AR tox Pm with Elisa or PCR

Table 2

herds	N T	herds ELISA	pos. PCR	number of swab	tot. % PM	% ELISA pos.	% PCR pos.
5 clinical	N	5	5	75	67	27	63
AR	Т	1	2	35	66	9	60
8 vaccin. AR	Ν	3	3	276	45	3	7
history	Т	6	8	299	59	6	11
5 vaccin. no AR	Ν	0	0	379	56	0	0
history	Т	0	0	364	66	0	0

energy percenting in provided the problem

Comparison of Elisa and PCR test

(replacement of the guinea pig skin test)

- Conclusion;
- There is no complete agreement between both tests
- In cases of test and removal and or certifying herds free of ARtox Pm, this has to be taken in account.

Table 1a

		ELISA		
		+	-	
PCR	+	42	54	96
	-	2	791	793
	2, 11-51	44	845	889

Comparison of Elisa and PCR-test in 374 pigs of PAR herds

 Total examined pigs 	374
 Pos. after subculture + Elisa 	32
 Pos. after Plate Washing.+Elsa 	27
 Total pos. with Elisa 	44
 Total pos. with PCR 	96
 Total AR-Tox.Pm pos 	98

Development of methods to detect Pmtox+ in Pm and Bb in the fight against AR

- Detection of Tox. P.Mult. Replacement of Lab. animals;
 -Mice to isolate Pm, Replaced by Selektivmedium (CVGA) for Pm/Bb
 -Guineapig skintest;
 - -EBL/Vero tissue culture;
 - -Elisa in * P.mult. Pure cultures;
 - * Plate washing suspension of primary and secundary culture plates
- Detection of Tox. Pm by PCR;
 - different primers (sensitivity / specificity ?)
 - different pretreatments of the samples
 - detection directly in direct sample or after enrichment stap
- Detection of antibodies against AR-Tox. antigen;
 Serumneutralisationtest in;
 - -Guineapigskintest,
 - -Mouse letalitytest,
 - -Tissueculturés
 - -Elisa's

Serology

Bb antibodies: Comparison of RPA and CBR

Table 1. The serum reciprocal antibody titre of the vaccinated

sows of group A before and after vaccination

Scw No	titre before vaccination 60 th day of gestation	titre on the 100 th day of gestation	titre 5th day after partus
61	neg	500	500
82	50	100	500
140	. 50	100	500
143	50	1.000	500
66	25	500	1.000
100	50	500	1.000
138	50	500	1.000
67	50	1.000	1.000
52	neg	500	1.000
89	neg	500	1.000
136	25	50	100

titres higher then 1 : 1.000 were not further tested.

P.Mult toxin neutralization

Table	8:	The ne	utrali	zatic	n an	d c	rossprote	ction	of	E two	PM-	-AR
		toxins	with	anti-	toxi	n co	ontaining	rabb	it	sera	in	the
		mouse	lethal	lity-	and	the	guinea-p	ig sk	int	ests	ð 11	

toxinanti-toxintoxin/antitoxinlethality testpig skin test40456404569 : 10/3-40456404569 : 10/3-47459474599 : 10/3-47456474599 : 13/3+40456474599 : 13/3+40456474599 : 13/3+40456474599 : 13/3-40456474599 : 13/3-47459404569 : 10/3-	proportion	mouse	guinea-	
40456 40456 $9:1$ $0/3$ $ 99:1$ $0/3$ $ 99:1$ $0/3$ $ 47459$ 47459 $9:1$ $0/3$ $ 47459$ 47459 $9:1$ $0/3$ $ 47459$ 47459 $9:1$ $3/3$ $+$ 40456 47459 $9:1$ $3/3$ $ 40456$ 47459 $9:1$ $3/3$ $ 40456$ 47459 $9:1$ $3/3$ $ 40456$ 47459 $9:1$ $3/3$ $ 4:1$ $0/3$ $ 0/3$ $ 4:1$ $0/3$ $ 0/3$ $-$	toxin/antitoxin	test '	test "	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 : 1 9 : 1 99 : 1	0/3 0/3 0/3		
40456 47459 $4 : 1$ $0/3$ $ 9 : 1$ $3/3$ $ 99 : 1$ $3/3$ $+$ $4 : 1$ $0/3$ $ 47459$ 40456 $9 : 1$ $0/3$ $-$	4 : 1 9 : 1 99 : 1	0/3 3/3 3/3	- <u>+</u> +	
4 : 1 0/3 -	4 : 1 9 : 1 99 : 1	0/3 3/3 3/3	- - +	
99 : 1 3/3 +	4 : 1 9 : 1 99 : 1	0/3 0/3 3/3	- - +	
) mouse lethality t) guinea-pig skinte		proportion toxin/antitoxin 4 : 1 9 : 1 99 : 1 4 : 1 9 : 1 99 : 1 29 : 1 99 : 1 cest: number of mice per number of est : + = haemorrhag a diameter hours + = diameter of	proportionmouse lethality test '41 $0/3$ 91 $0/3$ 991 $0/3$ 991 $0/3$ 991 $0/3$ 991 $3/3$ 991 $3/3$ 991 $3/3$ 991 $3/3$ 991 $3/3$ 991 $3/3$ 991 $3/3$ 991 $3/3$ 991 $3/3$ 991 $3/3$ est:number of mice dying after per number of mice inject a diameter of >15 mm a hours+= diameter of the haemo	

 - = no haemorrhagic necrotic skinreaction after 72 hours.

Anti – AR toxin of P.mult. in 8 week old pigs born from AR vaccinated sows

Number of herds	Examined serum samples	Antibo	Clinical AR		
	pro farm	< 2	2-32	≥64	BS
		%	%	%	%
7	14	5	23	72	0
3	12	11	19	70	<1
6	15	27	24	49	<5
7	12	55	35	10	≥5

PM - TOXIN NEUTRALIZING ANTIBODIES IN SOW AND THEIR OFFSPRING

SOW	TITRE	PIG		AGE	
NO.	SOW	NO.	3 DAYS	3 WEEKS	6 WEEKS
1	<2	1	<2	<2	<2
		2	<2	<2	<2
		3	<2	<2	<2
2	5,6	1	16	2,8	2
		2	11	2,8	<2
3	45	1	45	8	<2
		2	128	22	11
4	>128	1	>128	>128	64
		2	128	22	8
		3	<2	<2	<2
5	>128	1	11	2,8	2,8
		2	128	32	22
		3	128	45	16

Pm- toxin neutralizing antibodies in sows.

Group	herd	number	Tite	rs				
	no.	of sows	<2	<2 <8	>8 <32	>32 <64	>64 <128	>128
Α	1	11	11					
	2	15	15					
В	3	9	9					
	4	15	15					
С	5	10	10					
	6	15	15					
D	7	20	15	3	1	0	0	1
	8	25	7	1	4	2	4	7
	9	18	1	4	0	0	4	9

Legends:

Group A: herds free of AR and free of toxinogenic Pm

- B: herds with AR and with toxinogenic Pm
- C: herds as cat. B: sows vaccinated with a Pm vaccin without toxinogenic factor.
- D: herds as cat. B: sows vaccinated with a Pm vaccin with the toxinogenic factor.

Elisa tests to detect ART antibodies

- The trials in mice and guinea pigs could be replaced by tissue cultures eg EBL or Vero cells
- These test are replaced by Elisa based tests today
- Remind discrepancies between the tests.
- Antibodies after a natural ARtox.Pm infection are difficult to detect
- Vaccination titers from potent ART vaccines can be shown much easier.
- For Tox.Pm eradication there are indications that we do need high ART antibodies, higher than needed for clinical AR herd improvements

Reduction of profit by PAR

Pedersen K.B. and Barfod K. Nord. Vet. Med. 1982-34-293-302.

Mean daily weight gain (g) in relation to the degree of turbinate atrophy.

.

		challenged	d with	
	Turbinate Atrophy	B.bronch. and	B.bronch. and	
		P. mult.	P. mult.	Index
(Hed)		tox	tox. +	
0	0	633.7	633.5 a	100
1	?	623.8	636.9 a	101
2	+	662.7	617.6 a	98
3	++	647.5	568.4 b	90
4	+++		540.0 c	85
		no significant	means with	diff.
		difference	superscrip	ts dif-
		(analysis of	fer signif	icantly
		variance)	P 0.05, t	: - test

Profit reduction due to respiratory diseases (Blaha)

4	W	W	W	$ \mathcal{U} \rangle$	W	U
0	-3%	-8%	- 15%	- 19%	-24%	-30%
0	-3%	-8%	- 15%	-20%	-24%	-30%
- 3%	-4%	-10%	- 17%	-20%	-25%	-32%
-6%	-8%	-11%	- 18%	-23%	-28%	-34%
- 12%	-14%	-17%	-21%	-25%	-30%	-36%
-17%	-18%	-21%	-25%	-30%	-33%	-40%
	0 0 - 3% - 6% - 12%	0 -3% 0 -3% -3% -4% -6% -8% -12% -14% -17% -18%	0 $-3%$ $-8%$ 0 $-3%$ $-8%$ $-3%$ $-4%$ $-10%$ $-6%$ $-8%$ $-11%$ $-12%$ $-14%$ $-17%$ $-17%$ $-18%$ $-21%$	0 -3% -8% -15% 0 -3% -8% -15% -3% -4% -10% -17% -6% -8% -11% -18% -12% -14% -17% -21% -17% -18% -21% -25%	0 -3% -8% -15% -19% 0 -3% -8% -15% -20% -3% -4% -10% -17% -20% -6% -8% -11% -18% -23% -12% -14% -17% -25% -30% -17% -18% -21% -25% -30%	0 -3% -8% -15% -19% -24% 0 -3% -8% -15% -20% -24% -3% -4% -10% -17% -20% -24% -3% -4% -10% -17% -20% -25% -6% -8% -11% -18% -23% -28% -12% -14% -17% -21% -25% -30% -17% -18% -21% -25% -30% -33%

Abb. 6: Reduzierung des ökonomischen Ertrages durch respiratorische Erkrankungen Fig. 6: Profit reduction due to respiratory diseases T. Blaha

Growth reduction related with Brachygnatia superior(at start of the fattening) and av.turbinate atrophy at slaughter

- Tabel 3: Gemiddelde dagelijkse groei vergeleken met BS (Done) en ventrale conchae atrofie (AVC) bij 341 varkens van AR-bedrijven.
- Table 3: Mean daily weight gain compared with BS (Done) and turbinate atrophy (AVC) in 341 pigs of AR diseased herds.

	startge	wicht 1) 20-	25 kg
BS 2) in mm geschat	aantal 3) varkens	groei/4) dag in gr.	gem, 5) AVC
-2/3	21	590	1,02
-1	47	560	1,70
0	46	591	1,81
+1	63	567	2,34
+2	31	565	2,98
+3	31	537	3,28
+4	24	501	3,81
+5/6	38	512	3,63
+7/10	22	484	4
> 10	18	472	3,94
	341		

- 1) startweight
- 2) estimated BS in mm
- 3) number of pigs
- 4) growth/day (gm)
- 5) mean AVC

PAR schematized

Bordetella bronchiseptica Pathogenesis

Predisposition for toxin producing Pasteurella??

Atrophic Rhinitis=?

Concheahypoplasia

RAtoxin prod. Bordetella bronchiseptica **non-progresive** Atrophic Rhinitis <u>ARtoxin prod.</u> <u>Pasteurella</u> <u>multocida</u> progressive AtrophicRhinitis

Surrounding Virulency Immunity Secundary Agents

Stocking density Continously higher proportion of gilts Incorrect Climate Dry feeding

Less reducion of profit

Strong reduction of profit

Progressive Atrophic Rhinitis Pathogenesis Destruction mucosa Mucus accumulation Infectious causes non infectious causes toxinbildende Pasteurellen -dry air catarrhalic-purulent Rhinitis -toxic gasses Osteoblast reduction -dust Virrisses -IBR(Cytomegalo) Schnüffel -Influenza -colt air,draft -PRRS -chancegings in -Aujeszky temperatur -Circo2 **Bacteria** -Mycoplasmata

-Streptococces

-Bordetella

Conchae hypoplasia

Treatment and Vaccination

Therapy for Piglet producers

Sow herd treatment 14d

Individuel animal:, Enrofloxacin, Oxytetracyclin, Penstrep oral: 500 - 1000 ppm Trim.Sulf. oder Tetracycline 400 ppm Tilmicosin

Injection of all farrowing piglets: OTC;PenStrep d3,d6,d9,d12,d15,d18,d21,d24 Doxy. or Draxxin 1x p.W? Longacting-AB; Naxel

till weaning;

Feedmedikation of all weaners till 25-30 kg (s.o.)

Sowherd vaccination after AR outbreak (high potent Antibodies against ARToxin)

The % of PM+ isolates in challenged piglets in trial 1 and 2

Elimination of ARtox.Pm from sow herds with help of ART vaccin

Proceedings of the 14th IPVS Congress, Bologna, Italy, 7-10 July

ELIMINATION OF AR TOXINOGENIC PASTEURELLA FROM INFECTED SOW HERDS BY A COMBINATION OF ART VACCINATION AND TESTING SOWS WITH A PCR AND ELISA TEST

M.F. De Jong^{*1}, E. Kamp², A. van der Schoot, T. von Banniseth¹ ¹ Dutch Animal Health Service, Deventer, The Netherlands; ² ID-DLO, Lelystad, The Netherlands

Tonsil scratching: boar

Eradication of ARtox.Pm in PAR herds by help of

ART vaccination and management factors

<u></u>				_			_	
farm size	period ARTP vaccin	ARTP free gilts	sows tested nose/ tonsil	tot. with PM	ELISA ARTP cult.	ELISA ARTP mix	PCR ARTP	ARTP tot. pos. sows (PCR+ ELISA pos.)
I(300)	5	+	N110	62	0	0	0	0
			T110	47	0	0	0	
II(450)	4	+	N 99	60	0	0	0	
			T 99	67	0	0	0	
III(200)	4	+	N 40	31	0	0	0	
			T 40	28	0	0	0	
IV(150)	5	+	N 22	18	0	0	0	
			T 22	21	0	0	0	
V(200)	7		N183	107	0	0	0	
			T183	135	0	0	0	
VI(150)	7	+	N 36	31	0	0	0	
			T 36	33	0	0	0	
VII(1000)	10	-	N 50	8	1	1	NT	2
			T 50	27	1	1d	NT	(NT)
VIII(450)	6	-	N100	45	5	32.8d	NT	39
Na needowa testora.			T100	61	5	13.13d	NT	(NT)
IX(450)	7	-	N 50	5	0	0	4	9
			T 50	16	2	1	6	(2)
X(250)	4	-	N 50	11	1	1	1	6
			T 50	15	3	2d	4	(3)
XI(200)	6		N 50	35	7	4	12	26
			T 50	28	8	1	19	(13)
XII(120)	6	+	N 50	31	0	0	0	2
1000000			T 50	46	1	0	2	(1)
XIII(450)	7	-	N 50	25	0	0	0	1
54540751102007270			T 50	33	1	1		(1)

Table 1c.

Results of screening ART vaccinating breeding farms with a PAR history using the PCR-test and the effect of a test and removal programme.

Farm	Test run	Number	ART-Pm PCR	
4	1	sows 124	19 (15%)	1-7-'98
	2	sows 102	4 (4%)	
	3	sows 111	6 (5%)	
	4	sows 116	4 (3%)	
	5	sows 126	2 (2%)	5-11-'98
	6	sows 91	0	10-12-98
	7	sows 98	0	7-1-'99
	8	sows 103	0	1-6-'99,stop vac.
	9	sows 102	0	5-1-2000
	10	sows 19	0	13-3-2000

Results of a test and removal in a 1000 sow farrow to finish breeding farm by PCR of nose+tonsil samples

- 1st inv Dec03/Jan.04 Sows/boars 540 Carriers = 5,6 %
- 1st 2ndFebr.04 Sows/boars 757 Carriers =2,9 %
- 2 nd inv.März/Mai04Sows/boars 610 Carriers =1,5.%
- 3 rd inv. Juli 04 Sows/boars1065 Carriers (16) =1,5 %
- 4 rd inv. Aug.04 Sows/boars1100 Carriers (4) =0,36%
- 5 rd inv.Sept.04 Sows/boars1022 Carriers (1) = 0,001%
- 6 th inv. Nov.04 Sows/boars 898 Carriers (0) = 0,%
- 7 th inv. Dez.04 Sows/boars1080 Carriers (2) = 0,002%
- 8 th inv. Jan.05 Sows/boars 989 Carriers(1?) = 0,0%
- 9 th inv. Feb.05 Sows/boars 1010 Carriers (0) = 0,0%
- 10th inv. May05 Sows/boars 1030 Carriers (0) = 0,0%

Results of a test and removal program in a 1000 sow farrow to finish breeding farm by PCR of nose+tonsil samples

- During the first year ARtox free gilts were bought and vaccinated 3x in the quarantine before introduction in the sow herd.
- After introduction of these vaccinated gilts these could be kept almost free of becoming a carrier (only 1 of 300 was tested pos. and slaughtered but examining nose and tonsils again were negativ).
- Of 16 tested farmworkers and staf 2 were ARtox. Pm. positiv
- After the finishing of the ART herd vaccination and also finishing the medication in the growing out and fatteners, we regularly tested groups of own bred replacement gilts, sows, weaners, growing outs and fatteners by PCR.
- These examinations were carried out in a herd monitor 3x a year according to Dutch PM+free certification regulation.
- During each monitoring 48 pigs were tested. During all these tests from 2005 till 2010 no ARtoxPm could be detected.
- (In case of a carrier, we had expected a relaps within 1 or 2 years after finishing medication and vaccination)
- For this reason we have declared this farm free of ARtox.Pm since 2007

Conclusions

- From this and earlier observations in PAR herds producing their own replacement gilts, it is difficult to eradicate the toxigenic P. multocida (less than 25% chance).
- With the test and removal programme we succeeded in eliminating the carriers after 5-7 investigations in a period of 5-12 months.

Pm+ free certified breeding farms

Jahr	1982 1987	1988 1994	1990 1991	1992 1993	1994 1998	1999 2000	2001 2003	2004	2005 2006	2007 2010	
Gw Pm+ inf	213 66 31%	1398 13	1375 11	1115 8	1098 3	750 1	600 -	425 -	350 -	220 -	
Pm+ Frei Zert	72	440	493	596	876	750	600	425	350	220	
Pm+ inf		9	4	5	3	1	0	2	0	0	

ARtox. P.mult. is isolated from different animal species and from human

- Isolations described from:
- Pigs
- Rabbits/hares
- Turkey / poultry / birds
- Sheep / goat
- Dogs
- Cats
- Rats / mice
- Human
- ARtox.Pm has to be considered as a zoonotic disease agent
Table 1. Source of isolation and toxigenic properties of 44 isolates of P. multocida ssp. multocida from humans

SOURCE	TOXIN +	PR	oDUCI	TION
	 6		9	
SPUTUM	2		0	
DI.FURA	3		2	
BITE	 Ō		3	
BLOOD	2		3	
APPENDIX	0		2	
OTHER	0		7	
UNKNOWN	2		4	
TOTAL	15	4	29	
	= 34%			

(Hospitalized

75

ATROPHIC RHINITIS IN PIGS CAUSED BY A HUMAN ISOLATE OF TOXIGENIC PASTEURELLA MULTOCIDA

J.P. NIELSEN"1' & W. FREDERIKSEN"'

1) National Veterinary Laboratory, Bülowsvej 27, P.O.Box 373, DK-1503, Copenhagen V, Denmark.

2) The State Seruminstitute Copenhagen, Amager Boulevard 80, DK-2300 Copenhagen S, Denmark

Future perspectives to reduce losses by ARtox Bb and ARtox Pm

Future perspectives concerning ARtox Bb and ARtox Pm

- Eradication of ARtox Pm by:
- Vaccination of infected sow herds with a high potent Bb+ART vaccine until the last carrier is moved out. This procedure can be speeded up with a test and removal program. Also introduction of vaccinated gilts/boars from a free source can be helpful. Use consequent Ai/Ao
- The quickest method to clean a farm from ARtox.Pm is de- and repopulate with certified free stock.
- Test the farm staff and laborers for ARtox Pm.
- Vaccination against ARtox.Pm can be finished when the herd is repeatedly tested free.
- By improvement of biosecurity standards herds can be kept free of ARtox.Pm
- Use semen or boars from certified Ai centers or breeders

Future perspectives concerning ARtox Bb and ARtox Pm

- The influence of a Bb infection can be minimized by vaccinating replacement gilts and boars.
 - The sow herd can be vaccinated when the Bb antibody profile is low or heterogenic.
- The piglets need to take sufficient colostrum to protect them for an Bb infection at a young age.
- Postpartum hypogalactiae and large litters are risk factors for insufficient colostrum uptake.
- Combination of Bb and other vaccines e.g. Erysipelotrix or Parvo has to be taken into consideration.
- New herd sampling methods have to be tested for the detection of ARtox Pm and Bb by PCR on herd level.
- Automatic application of vaccines with needle less injection technics

Good lactating sow

- Bad lactating sow
- Check sows for udder and teat / nipple quality regular
- Examine sow condition and feed quality, amount of food, feeding schema and amount and quality of water
- Check transition from gestation to lactation feed

Collection of oral fluid: New sampling method to detect DNT pos P.mult and Bb by PCR?

Thank you for your attention

Dank voor uw aandacht